

Practical Workbook

CS-103

Programming Languages

(FD)

Department of Computer & Information Systems Engineering

NED University of Engineering & Technology

Name : _____________________________

Year : _____________________________

Batch : _____________________________

Roll No : _____________________________

Department: _____________________________

Teacher : _____________________________

INTRODUCTION

The Practical Workbook for “Programming Languages” introduces the basic as well as advance

concepts of programming using C language. C has been selected for this purpose because it

encompasses the characteristics of both the high level languages; which give a better

programming efficiency and faster program development; and the low level languages; which

have a better machine efficiency.

Each lab session begins with a brief theory of the topic. Many details have not been incorporated

as the same is to be covered in Theory classes. The Exercise section follows this section.

The Workbook has been arranged as thirty labs starting with a practical on the Introduction to

programming environment and fundamentals of programming language.

Next lab session deals with single stepping; an efficient debugging and error detection technique.

Next three lab sessions cover the basic building blocks of programming. These practicals

introduce the concepts of decision making; loops; function declaration and definition etc.

The next three experiments deal with the advance concepts like arrays, pointers, structures and

unions. These features enable the users to handle not only large amount of data, but also data of

different types (integers, characters etc.) and to do so efficiently.

Separate practicals have been included for different graphics and text modes, passing variable

number of arguments to functions, and command line arguments.

Further two lab sessions covers the filing feature, which allows the user to store/retrieve the data

on/from permanent storage like floppy or hard disk and various file and directory manipulation

functions.

Finally, there are labs on hardware interfacing using ROM BIOS routines, which explain

accessing the system color palettes, interfacing mouse etc. in programs using C.

Few changes have been made in the examples and exercises of this workbook since its last

edition which was printed in 2011. Now these are more comprehensive than those of the

previous issue. One lab session of the previous workbook is replaced by an appendix that

discusses various date and time functions.

Practical Workbook

Programming Languages

CONTENTS

Lab Session

No.
Objective

Page

No.

1 Programming Environment Setup Using Turbo C Compiler 1

2 Fundamentals of Programming Language 4

3 Debugging and Single-Stepping of Programs 8

4 Installing Breakpoints for Debugging 11

5 Decision Making in Programming (If, If-else) 13

6 Decision Making in Programming (Switch Case, Ternary Operator) 16

7 Study of Loops (For loop) 19

8 Study of Loops (While, do-while loop) 22

9 Break and Continue 25

10 Study of Functions 28

11 Recursion 33

12 Study of Arrays 35

13 String Arrays 39

14 Study of Structures 42

15 Unions 44

16 Graphics in C 46

17 Executing Different Functions in Graphics 48

18 Study of Pointer Variables 52

19 Pointers and Arrays 55

20 Pointers as Function Arguments 58

21 Working with Files 61

22 Linked List 65

23 File and Directory Manipulation Functions 68

24 Command Line Arguments 71

25 Variable Length Arguments 74

26 Hardware Interfacing through User-developed Programs 81

27 Parallel Port Interfacing 85

28 Mouse Interfacing using Programs in C-Language 87

29 Type and Storage Classes 91

30 Project 94

Programming Languages Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 1

Lab Session 01

OBJECTIVE

Familiarization with Programming Environment using Turbo C

THEORY

The Development Environment - Integrated Development Environment (IDE):

The C compiler has its own built-in text editor. You may also use a commercial text editor or
word processor that can produce text files. The important thing is that whatever you write
your program in, it must save simple, plain-text files, with no word processing commands
embedded in the text. The files you create with your editor are called source files, and for
C++ they typically are named with the extension .CPP, .CP, or .C.

The C Developing Environment, also called as Programmers’ Platform, is a screen display
with windows and pull-down menus. Code of the program, error messages and other
information are displayed in separate windows. The menus may be used to invoke the
operations necessary to develop the program, debug and execute the program.

Invoking the IDE

To invoke the IDE from the windows you need to double click the TC icon.

To do so from the command prompt go in the specific directory and type ‘tc’. This makes you
enter the IDE interface, which initially displays only a menu bar at the top of the screen and a
status line below will appear. The menu bar displays the menu names and the status line tells
what various function keys will do.

Using Menus

If the menu bar is inactive, it may be invoked by pressing the [F10] function key. To select
different menu, move the highlight left or right with cursor (arrow) keys. You can also revoke
the selection by pressing the key combination for the specific menu.

Opening New Window

To type a program, you need to open an Edit Window. For this, open file menu and click
“new”. A window will appear on the screen where the program may be typed.

Writing a Program

When the Edit window is active, the program may be typed. Use the certain key
combinations to perform specific edit functions.

Saving a Program
To save the program, select save command from the file menu. This function can also be
performed by pressing the [F2] button. A dialog box will appear asking for the path and name
of the file. Provide an appropriate and unique file name. You can save the program after
compiling too but saving it before compilation is more appropriate.

Making an Executable File

Programming Languages Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 2

The source file is required to be turned into an executable file. This is called “Making” of the
.exe file. The steps required to create an executable file are:
1. Create a source file, with a .cpp extension.
2. Compile the source code into a file with the .obj extension.
3. Link your .obj file with any needed libraries to produce an executable program.

Compiling the Source Code

Although the source code in your file is somewhat cryptic, and anyone who doesn't know C
will struggle to understand what it is for, it is still in what we call human-readable form. But,
for the computer to understand this source code, it must be converted into machine-readable
form. This is done by using a compiler. Hence, compiling is the process in which source code
is translated into machine understandable language.

Creating an Executable File with the Linker

After your source code is compiled, an object file is produced. This file is often named with
the extension .OBJ. This is still not an executable program, however. To turn this into an
executable program, you must run your linker. C programs are typically created by linking
together one or more OBJ files with one or more libraries. A library is a collection of linkable
files that were supplied with your compiler.

Project/Make

Before compiling and linking a file, a part of the IDE called Project/Make checks the time
and date on the file you are going to compile.

Compiling and linking in the IDE

In the Turbo C IDE, compiling and linking can be performed together in one step. There are
two ways to do this: you can select Make EXE from the compile menu, or you can press the
[F9] key.

Executing a Program

If the program is compiled and linked without errors, the program is executed by selecting
Run from the Run Menu or by pressing the [Ctrl+F9] key combination.

The Development Cycle

If every program worked the first time you tried it, that would be the complete development
cycle: Write the program, compile the source code, link the program, and run it.
Unfortunately, almost every program, no matter how trivial, can and will have errors, or
bugs, in the program. Some bugs will cause the compile to fail, some will cause the link to
fail, and some will only show up when you run the program.Whatever type of bug you find,
you must fix it, and that involves editing your source code, recompiling and relinking, and
then rerunning the program.

Correcting Errors
If the compiler recognizes some error, it will let you know through the Compiler window.
You’ll see that the number of errors is not listed as 0, and the word “Error” appears instead of
the word “Success” at the bottom of the window. The errors are to be removed by returning
to the edit window. Usually these errors are a result of a typing mistake. The compiler will
not only tell you what you did wrong; they’ll point you to the exact place in your code where
you made the mistake.

Programming Languages Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 3

Exiting IDE

An Edit window may be closed in a number of different ways. You can click on the small
square in the upper left corner, you can select close from the window menu, or you can press
the [Alt][F3] combination. To exit from the IDE select Exit from the File menu or press
[Alt][X] combination.

EXERCISES

1. Load and execute the following program using Turbo C environment. Explore

different features available for execution.

#include<stdio.h>
int main()
{
Print (“Hello World \n”)
Return 0
}

Programming Languages Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 4

Lab Session 02

OBJECTIVE
 Fundamentals of Programming Language

Building Blocks of Programming Language:

In any language there are certain building blocks:
 Constants
 Variables
 Operators
 Methods to get input from user (scanf(), getch() etc.)
 Methods to display output (Format Specifier, Escape Sequences etc.) and so on.

Variables and Constants

If the value of an item can be changed in the program then it is a variable. If it will not
change then that item is a constant. The various variable types (also called data type) in C
are: int, float, char, long etc. For constants, the keyword const is added before declaration.

Operators

There are various types of operators that may be placed in three categories:
Basic: + - * / %
Assignment: = += -= *= /= %=

(++, -- may also be considered as assignment operators)
Relational: < > <= >= == !=

Format Specifiers

Format Specifiers tell the printf statement where to put the text and how to display the text.
The various format specifiers are:

%d => integer
%c => character

 %f => floating point etc.

Field Width Specifiers

They are used with % to limit precision in floating point number. The number showing limit
follows the radix point.

Escape Sequences

Escape Sequence causes the program to escape from the normal interpretation of a string, so
that the next character is recognized as having a special meaning. The back slash “\”
character is called the Escape Character”. The escape sequence includes the following:

\n => new line
\b => back space
\r => carriage return
\” => double quotations
\\ => back slash etc.

Programming Languages Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 5

Getting Input From the User

The input from the user can be taken by the following techniques: scanf(), getch(), getche(),
getchar() etc.

Examples

1. Implementing a Simple C Program

#include<conio.h>
#include<stdio.h>
void main(void)

 {
 clrscr();
 printf(“\n Hello World”);
 getch();
 }

2. Demonstrating the fundamentals of C Language

#include<conio.h>
#include<stdio.h>

 void main(void)
 {

clrscr();
 int num1,num2,sum,product;
 printf(“\tThe program takes two numbers as input and
 prints their sum and product”);
 printf(“\n Enter first number:”);
 scanf(“%d”,&num1);
 printf(“\n Enter second number:”);
 scanf(“%d”,&num2);
 sum=num1+num2;
 product=num1*num2;
 printf(“\n%d+%d=%d”,num1,num2,sum);
 printf(“\n%d*%d=%d”,num1,num2,product);

getch();
 }

EXERCISES

1. Type the following program in C Editor and execute it. Mention the Error (if any).

void main(void)
{
 printf(“This is my first program in C”);
}

Programming Languages Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 6

2. Add the following line at the beginning of the above program. Recompile the
program. What is the output?

#include<stdio.h>

3. Make the following changes to the program. Mention the Errors observed, in your

own words:
i. Write Void instead of void.

ii. Remove the semi colon ‘;’.

iii. Erase any one of brace ‘{’ or ‘}’ .

4. Write a program to calculate the Area (A= 𝜋r2) and circumference of a circle (C=2πr),

where r = radius is taken as input and 𝜋 is declared as a constant. The precision of 𝜋
should be the number of characters in your name. Display the result to 4 decimal
places.

__

Programming Languages Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 7

5. Write a single C statement to output the following on the screen:

 My name is “Your Name”

And my roll number is “00Your_roll_no”
 I am a student of ‘Computer and Information System Department’

Programming Languages Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 8

 Lab Session 03

OBJECTIVE

Debugging and Single-Stepping of Programs

THEORY

One of the most innovative and useful features of Turbo C++ is the integration of debugging
facilities into the IDE.

Even if your program compiles perfectly, it still may not work. Such errors that cause the
program to give incorrect results are called Logical Errors. The first thing that should be
done is to review the listing carefully. Often, the mistake will be obvious. But, if it is not,
you’ll need the assistance of the Turbo C Debugger.

One Step at a Time

The first thing that the debugger can do for you is slow down the operation of the program.
One trouble with finding errors is that a typical program executes in a few milliseconds, so all
you can see is its final state. By invoking C++’s single-stepping capability, you can execute
just one line of the program at a time. This way you can follow where the program is going.

Consider the following program:
 void main(void)
 {
 int number, answer=-1;
 number = -50;
 if(number < 100)

 if(number > 0)
 answer = 1;
 else
 answer = 0;

 printf(“answer is %d\n”, answer);
 }

Our intention in this program is that when number is between 0 and 100, answer will be 1,
when the number is 100 or greater, answer will be 0, and when number is less than 0,
answer will retain its initialized value of –1. When we run this program with a test value of
-50 for number, we find that answer is set to 0 at the end of the program, instead of staying
–1.

We can understand where the problem is if we single step through the program. To do this,
simply press the [F7] key. The first line of the program will be highlighted. This highlighted
line is called the run bar. Press [F7] again. The run bar will move to the next program line.
The run bar appears on the line about to be executed. You can execute each line of the
program in turn by pressing [F7]. Eventually you’ll reach the first if statement:

 if (num < 100)

Programming Languages Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 9

This statement is true (since number is –50); so, as we would expect the run bar moves to the
second if statement:

 if(num > 0)

This is false. Because there’s no else matched with the second if, we would expect the run bar
to the printf() statement. But it doesn’t! It goes to the line

 answer = 0;

Now that we see where the program actually goes, the source of the bug should become clear.
The else goes with the last if, not the first if as the indenting would lead us to believe. So, the
else is executed when the second if statement is false, which leads to erroneous results. We
need to put braces around the second if, or rewrite the program in some other way.

Resetting the Debugger

Suppose you’ve single stepped part way through a program, and want to start over at the
beginning. How do you place the run bar at the top of the listing? You can reset the
debugging process and initialize the run bar by selecting the Program Reset option from the
Run menu.

Watches

Single stepping is usually used with other features of the debugger. The most useful of these
is the watch (or watch expression). This lets you see how the value of variable changes as the
program runs. To add a watch expression, press [Ctrl+F7] and type the expression.

EXERCISES

1. Fill out all the entities in table by their corresponding values by inserting watches and
single stepping the program.

 Before Execution After Execution

 num sqr num sqr

i. int num=your_roll_no, sqr ;

sqr= num*num ;

 Before Execution After Execution

 ch ch

ii. char ch=‘First letter of your Name’;

ch ++;

Programming Languages Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 10

Before

Execution
After Execution

 x y avg x y avg

iii. int x=your_roll_no,y=your_roll_no+50;

float avg;

avg=(x+y)/2;

Programming Languages Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 11

 Lab Session 04

OBJECTIVE
Installing Breakpoints for Debugging

Breakpoints

It often happens that you’ve debugged part of your program, but must deal with a bug in
another section, and you don’t want to single-step through all the statements in the first part to
get to the section with the bug. Or you may have a loop with many iterations that would be
tedious to step through. The way to do this is with a breakpoint. A breakpoint marks a
statement where the program will stop. If you start the program with [Ctrl][F9], it will execute
all the statements up to the breakpoint, then stop. You can now examine the state of the
variables at that point using the watch window.

Installing breakpoints

To set a breakpoint, first position the cursor on the appropriate line. Then select Toggle
Breakpoint from the Debug menu (or press [Ctrl][F8]). The line with the breakpoint will be
highlighted. You can install as many breakpoints as you want. This is useful if the program
can take several different paths, depending on the result of if statements or other branching
constructs.

Removing Breakpoints

You can remove a single breakpoint by positioning the cursor on the line with the breakpoint
and selecting Toggle breakpoint from the Debug menu or pressing the [Ctrl][F8] combination
(just as you did to install the breakpoint). The breakpoint highlight will vanish.

You can all set Conditional Breakpoints that would break at the specified value only.

EXERCISES

1. The programs given below contain some syntax and/or logical error(s). By debugging
and installing breakpoints, mention the error(s) along with their categorization into
syntactical or logical error. Also, write the correct program statements.

i. // To check whether the number is divisible by 2 or not:

 int num;
 printf(“enter any number”)
 scanf(“%f”,num);
 if(num%2=0)
 printf(“Number is divisible by 2”);
 else
 printf(“number is not divisible by 2”);

Programming Languages Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 12

ii. // To print your batch
int x =Your_batch;

if (x=2010)
 printf(“Your batch is 2010”)
else
 printf(“Your batch is %d”,x);

iii. // To calculate the number of characters entered by the user. Exit on Esc or Enter.

int count=0;
char ch;
while(ch=getche()!=27)
{
if(Ch=='\r');
 break;
count++;
}
printf("Count =%d",count);

Programming Languages Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 13

Lab Session 05

OBJECTIVE
Decision Making in Programming (If, If-else)

THEORY

Normally, your program flows along line by line in the order in which it appears in your
source code. But, it is sometimes required to execute a particular portion of code only if
certain condition is true; or false i.e. you have to make decision in your program. There are
three major decision making structures. Four decision making structures:

1. If statement
2. If-else statement
3. Switch case
4. Conditional Operator (Rarely used)

The if statement

The if statement enables you to test for a condition (such as whether two variables are equal)
and branch to different parts of your code, depending on the result.
The simplest form of an if statement is:

if (expression)
 statement;

The expression may consist of logical or relational operators like (> >= < <= && ||)

An understanding of if statement is demonstrated with the following example:

 void main(void)
 {
 int var;
 printf(“Enter any number;”);
 scanf(“%d”,&var);
 if(var==10)
 printf(“The user entered number is Ten”);
 }

The if-else statement

Often your program will want to take one branch if your condition is true, another if it is false.
The keyword else can be used to perform this functionality:

if (expression)
 statement;
else
 statement;

Programming Languages Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 14

Note: To execute multiple statements when a condition is true or false, parentheses are used.
Consider the following example that checks whether the input character is an upper case or
lower case:
 void main(void)
 {
 char ch;
 printf(“Enter any character”);
 ch=getche();
 if(ch>=’A’&&ch<=’Z’)
 printf(“%c is an upper case character”,ch);
 else
 printf(“%c is a lower case character”,ch);

 getch();
 }
Typecasting

Typecasting allow a variable of one type to act like another for a single operation. In C
typecasting is performed by placing, in front of the value, the type name in parentheses.

EXERCISES

1. Write a program that takes a number as input from user and checks whether the
number is even or odd using if-else.

2. Mention the output for the following program :

 #include<stdio.h>
 void main()
 {
 int a=100;
 if(a>10)
 printf("Shahid Afridi");
 else if(a>20)

Programming Languages Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 15

 printf("Shoaib Akhtar");
 else if(a>30)
 printf("Kamran Akmal");
 }

Programming Languages Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 16

Lab Session 06

OBJECTIVE

Decision Making in Programming (Switch Case, Ternary Operator)

THEORY

The switch Statement

Unlike if, which evaluates one value, switch statements allow you to branch on any of a
number of different values. The general form of the switch statement is:

switch (expression)
{
case valueOne: statement;
 break;
case valueTwo: statement;
 break;
....
case valueN: statement;
 break;
default: statement;
}

An Example:
 void main(void)
 {
 clrscr();
 char grade;
 printf(“\n Enter your Grade: ”);
 grade=getche();
 switch(grade)
 {
 case ‘A’:
 case ‘a’:
 printf(“\n Your percentage is 80 or above 80 ”);
 break;

 case ‘B’:
 case ‘b’:
 printf(“\n Your percentage is in 70-80 ”);
 break;

 default:
 printf(“\n Your percentage is below 70 ”);

 }
 getch();
 }

Programming Languages Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 17

Conditional (Ternary) Operator

The conditional operator (? :) is C’s only ternary operator; that is, it is the only operator to
take three terms.

The conditional operator takes three expressions and returns a value:

(expression1) ? (expression2) : (expression3);

This line is read as "If expression1 is true, return the value of expression2; otherwise, return
the value of expression3." Typically, this value would be assigned to a variable.

An Example:

void main(void)
 {
 clrscr();
 float per;
 printf(“\n Enter your percentage;”);
 scanf(“%f”,&per);

 printf(“\n you are”);
 printf(“%s”, per >= 60 ?“Passed”:”Failed”);
 getch();
}

EXERCISES

1. Write a program that takes a number as input from user and checks whether the
number is even or odd.
a) Switch case:

Programming Languages Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 18

 b) Using conditional operator:

 2. Write a program that declares and initializes two numbers with your_roll_no and

your_friend_roll_no and displays the greater of the two. Use ternary operator.

Programming Languages Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 19

Lab Session 07

OBJECTIVE

Study of Loops (For loop)

THEORY

Types of Loops

There are three types of Loops:
 for Loop
 while Loop

 do - while Loop
Nesting may extend these loops.

The for Loop

for(initialize;condition;increment)
{
 Do this;
}

This loop runs as long as the condition in the parenthesis is true. Note that there is no
semicolon after the “for” statement. If there is only one statement in the “for” loop then the
braces may be removed.

An Example: A program that prints a list of odd numbers from 1 to 100

 void main(void)
 {
 clrscr();
 for(int i=1;i<100;i+=2)
 printf(“%d\t”,i);
 }

EXERCISES

1. Write necessary statements using for loop for the following:

i. To print your name Your_roll_no times, using for loop.

Programming Languages Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 20

ii. To print all the odd numbers between Your_roll_no and Your_roll_no + 100.

iii. To print the square of number(s) repeatedly till the 1 is entered by user..

2. Write a program to print the average of two numbers input by user.

Programming Languages Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 21

3. Write a program to generate the following output using for loop.

 1 10 2 9 3 8 4 7 5 6 6 5 7 4 8 3 9 2 10 1

Programming Languages Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 22

Lab Session 08

OBJECTIVE

Study of Loops (While, do-while loop)

The while Loop
 while(condition is true)

 {
 Do this;
 }

This loop runs as long as the condition in the parenthesis is true. Note that there is no
semicolon after the “while” statement. If there is only one statement in the “while” loop then
the braces may be removed.

An Example: A program that prints all numbers from 1 to 100 those are divisible by 5

 void main(void)
 {
 clrscr();
 int i;
 while(i<=100)
 {
 if(i%5==0)
 printf(“\t\n %d ”,i);
 i++;

 }//while ends
 }//main ends

The do-while Loop

 do
 {
 this;
 }
 while(condition is true);

This loop runs as long as the condition in the parenthesis is true. Note that there is a
semicolon after the “while” statement. The difference between the “while” and the “do-

while” statements is that in the “while” loop the test condition is evaluated before the loop is
executed, while in the “do” loop the test condition is evaluated after the loop is executed. This
implies that statements in a “do” loop are executed at least once. However, the statements in
the “while” loop are not necessarily executed.

An Example: A program that prints a string 10 times

 void main(void)
 {
 clrscr();

Programming Languages Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 23

int i=0;
 do
 {
 printf(“\n\t Your Name”);
 i++;
 }

while(i<10);
 }//main ends

EXERCISES

1. Write necessary statements using for loop for the following:

i. To print your name Your_roll_no times, using while loop.

ii. To print all the odd numbers between Your_roll_no and Your_roll_no + 100.

iv. To print the square of number(s) repeatedly till the 1 is entered by user..

Programming Languages Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 24

3. Write a program to print the average of two numbers input by user using while loop.

3. Write a program to generate the following output using do-while loop.

 1 10 2 9 3 8 4 7 5 6 6 5 7 4 8 3 9 2 10 1

Programming Languages Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 25

Lab Session 09

OBJECTIVE
Using Break and Continue within loops

THEORY

Two keywords that are very important to looping are break and continue. The break command
will exit the most immediately surrounding loop regardless of what the conditions of the loop
are. Break is useful if we want to exit a loop under special circumstances. For example, let's
say the program we're working on is a two-person checkers game. The basic structure of the
program might look like this:
while (true)
{
take_turn(player1);
 take_turn(player2);
}

This will make the game alternate between having player 1 and player 2 take turns. The only
problem with this logic is that there's no way to exit the game; the loop will run forever.
Following example shows a different approach
while(true)
{
if (someone_has_won() || someone_wants_to_quit() == TRUE)
{
break;
}
take_turn(player1);
if (someone_has_won() || someone_wants_to_quit() == TRUE)
{
break;
}
 take_turn(player2);
}

This code accomplishes what we want--the primary loop of the game will continue under
normal circumstances, but under a special condition (winning or exiting) the flow will stop
and our program will do something else.

Programming Languages Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 26

Continue is another keyword that controls the flow of loops. If you are executing a loop and
hit a continue statement, the loop will stop its current iteration, update itself (in the case of for
loops) and begin to execute again from the top. Essentially, the continue statement is saying
"this iteration of the loop is done, let's continue with the loop without executing whatever
code comes after me." Let's say we're implementing a game of Monopoly. Like above, we
want to use a loop to control whose turn it is, but controlling turns is a bit more complicated
in Monopoly than in checkers. The basic structure of our code might then look something like
this:

for (player = 1; someone_has_won == FALSE; player++)
 {
 if (player > total_number_of_players)
 {player = 1;}
 if (is_bankrupt(player))
 {continue;}
 take_turn(player);
 }
This way, if one player can't take her turn, the game doesn't stop for everybody; we just skip
her and keep going with the next player's turn.

Exercise:

Write a program to calculate sum of maximum of 10 numbers. Negative
numbers should be skipped from calculation.

Programming Languages Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 27

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 28

Lab Session 10

OBJECTIVE

Study of Functions

THEORY

Types of functions in C programming

Depending on whether a function is defined by the user or already included in C
compilers, there are two types of functions in C programming
There are two types of functions in C programming:

 Standard library functions
 User defined functions

Standard library functions

The standard library functions are in-built functions in C programming to handle
tasks such as mathematical computations, I/O processing, string handling etc.These
functions are defined in the header file. When you include the header file, these
functions are available for use. For example:

The printf() is a standard library function to send formatted output to the screen
(display output on the screen). This function is defined in"stdio.h" header file.
There are other numerous library functions defined under "stdio.h", such
as scanf(), fprintf(), getchar() etc. Once you include "stdio.h" in your program, all
these functions are available for use.

User-defined functions

As mentioned earlier, C language allows programmer to define functions. Such
functions created by the user are called user-defined functions.Depending upon the
complexity and requirement of the program, you can create as many user -defined
functions as you want. Following is the structure of a program containing
functions.

#include <stdio.h>
void functionName()
{

}

int main()
{

http://www.programiz.com/c-programming/library-function
http://www.programiz.com/c-programming/c-user-defined-functions

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 29

 functionName();

}

The execution of a C program begins from the main() function.When the compiler
encounters functionName(); inside the main function, control of the program jumps
to

void functionName()

And, the compiler starts executing the codes inside the user -defined function.The
control of the program jumps to statement next to functionName();once all the
codes inside the function definition are executed.Before defining a function, it is
required to declare the function i.e. to specify the function prototype. A function declaration is
followed by a semicolon ‘;’. Unlike the function definition only data type are to be mentioned
for arguments in the function declaration. The function call is made as follows:

 return_type = function_name(arguments);

There are four types of functions depending on the return type and arguments:
 Functions that take nothing as argument and return nothing.
 Functions that take arguments but return nothing.
 Functions that do not take arguments but return something.
 Functions that take arguments and return something.

Consider a simple example of function declaration, definition and call.

void function1(void);
void function2(void)
{
 printf("Writing in Function2\n");
}

void main(void)
{
 printf("Writing in main\n");
 function1();
}
void function1(void)
{
 printf("Writing in Function1\n");
 function2();
}

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 30

Consider another example that adds two numbers using a function sum() .
 void sum(void);
 void main(void)
 {
 printf(“\nProgram to print sum of two numbers\n”);
 sum(void);
 }
 void sum(void)
 {
 int num1,num2,sum;
 printf(“Enter 1st number:”);
 scanf(“%d”,&num1);
 printf(“Enter 2nd number:”);
 scanf(“%d”,&num2);
 sum=num1+num2;
 printf(“Sum of %d+%d=%d”,num1,num2,sum);
 }

EXERCISES

1. Using function, write a complete program that prints your name 10 times. The
function can take no arguments and should not return any value.

2. Write function definition that takes two complex numbers as argument and prints their

sum.

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 31

3. Using a function, swap the values of two variables. The function takes two values of
Variables as arguments and returns the swapped values:

4. Identify the errors (if any) in the following code:

a) func(int a,int b)
 {
 int a;
 a=20;
 return a;
 }

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 32

 b) #include<stdio.h>
 int main()
 {
 int myfunc(int);
 int b;
 b=myfunc(20);
 printf(“%d”,b);
 return 0;
 }
 int myfunc(int a)
 {

a > 20? return(10): return(20);
 }

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 33

Lab Session 11

OBJECTIVE

 Recursion

Theory

Recursion is an ability of a function to call itself.

An example: A program that calculates the following series using recursion.

 n + (n-1) + (n-2) + ………… + 3 +2 + 1

 int add(int);
 void main(void)
 {
 int num,ans;
 printf(“Enter any number:”);
 scanf(“%d”,&num);
 ans=add(num);
 printf(“Answer=%d”,ans);

 getch();
 }
 int add(int n)
 {
 int result;
 if(n==1)
 return 1;
 result=add(n-1) + n;
 return result;
 }

Built-in Functions

There are various header files which contain built-in functions. The programmer can include
those header files in any program and then use the built-in function by just calling them.

EXERCISES

1. Using recursion, write a program that takes a number as input and print its binary
equivalent.

Programming Languages Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 34

2. main() is a function. Write a function which calls main(). What is the output of this
program?

Programming Languages Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 35

Lab Session 12
OBJECTIVE

Study of Arrays

THEORY

An array is a collection of data storage locations, each of which holds the same type of data.
Each storage location is called an element of the array. You declare an array by writing the
type, followed by the array name and the subscript. The subscript is the number of elements in
the array, surrounded by square brackets. For example,

long LongArray[25];

declares an array of 25 long integers, named LongArray. When the compiler sees this

declaration, it sets aside enough memory to hold all 25 elements. Because each long integer

requires 4 bytes, this declaration sets aside 100 contiguous bytes of memory.

Consider the following program that take 10 numbers as input in an array and then print that

array.

 #include<stdio.h>

 void main(void)

 {

 clrscr();

 int arr[10];

 for(int i=0;i<10;i++)

 {

 printf(“\n\tEnter element %d:”,i+1);

 scanf(“%d”,&arr[i]);

 }

 clrscr();

Programming Languages Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 36

 for(int j=0;j<10;j++)

 printf(“\n\n\t Element %d is %d”,j+1,arr[j]);

 getch();

 }

EXERCISES

1. Write a program that store first n Fibonacci numbers in an array, where n is equal to
your_roll_no.

2. Implement the built-in function atoi() present in “stdlib.h”.

3. Declare an array of length equal to Your_roll_no. Take input in the array using a
function. Use another function to find the smallest element in that array.

Programming Languages Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 37

6. Write a program to search a number in an array of 10 elements.

Programming Languages Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 38

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 39

Lab Session 13
OBJECTIVE

String Arrays

THEORY

A string is an especial type of array of type char. Strings are the form of data used in
programming languages for storing and manipulating text. A string is a one dimensional array of
characters. Following are some examples of string
initializations

char str1[]={ N , E , D , \0 };

char str2[]={ NED };

char str3[]= NED ;

Each character in the string occupies one byte of memory and the last character is always
a NULL i.e. \0 , which indicates that the string has terminated. Note that in the second
and third statements of initialization \0 is not necessary. C inserts the NULL character
automatically.

An example

Let us consider an example in which a user provides a string (character by character) and
then the stored string is displayed on the screen.

/* Strings*/
void main(void)
{
clrscr();
char str[20];
char ch;
int i=0;
printf(\nEnter a string (20-characters max):);
while((ch=getche())!= \r) /*Input characters until
return key is hit*/
{
str[i]=ch;
i++;
}
str[i] = \0 ;
printf(\nThe stored string is %s ,str);
getch();
}
 It is necessary to provide \0 character in the end. For instance if you make

that statement a comment, you will observe erroneous results on the screen.

Library Functions for Strings

There are many library functions for string handling in C. Some of the most common are

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 40

listed below. In order to use these library functions you have to include header file
named string.h.

Functions Use

strlen :Finds length of the string
strlwr :Converts a string to lowercase
strupr :Converts a string to uppercase
strcpy :Copies a string into another
strcmp :Compares two strings
strrev : Reverses string
gets Input string from keyboard
puts :Output string on the screen

EXERCISES

1. Implement the built-in function strcmpi() present in header file “string.h”

2. Write a program that takes five names as input and sort them by their lengths. Use a

separate function for sorting.

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 41

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 42

Lab Session 14
OBJECTIVE

Study of Structures

THEORY

If we want a group of same data type we use an array. If we want a group of elements of
different data types we use structures. For Example: To store the names, prices and number of
pages of a book you can declare three variables. To store this information for more than one
book three separate arrays may be declared. Another option is to make a structure. No
memory is allocated when a structure is declared. It simply defines the “form” of the
structure. When a variable is made then memory is allocated. This is equivalent to saying that
there is no memory for “int”, but when we declare an integer i.e. int var; only then memory
is allocated.

Consider the following example of a structure:

 struct personnel
 {
 char name[50];
 int agentno;
 };
 void main(void)
 {

 struct personnel agent1={“Mustafa”,35};

 printf(“%s”,agent1.name);

 printf(“%d”,agent1.agentno);

 getch();

 }

EXERCISES

1. Declare a structure named employee that stores the employee id, salary and
department.

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 43

2. Define a structure to represent a complex number in rectangular format i.e. real +

iimag. Name it rect. Define another structure called polar that stores a complex
number as polar format i.e. mag /angle . Write a function called convert that takes a
complex number as input in rectangular format and returns the complex number
converted in Polar form.

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 44

Lab Session 15
OBJECTIVE

Unions

THEORY

Unions are also used to group a number of different variables together like a structure. But,
unlike structures, union enables us to treat the same space in memory as a number of different
variables. That is, a union is a way for a section of memory to be treated as a variable of one
type on one occasion, and as a different variable, of a different type, on another occasion.

In a structure, all the members are individual objects allocated contiguously. In a union, all
the members refer to the same object, and are allocated at the same address. All the members
of a union are equivalent, and the size of a union will be the size of its largest member. An
example is shows as
union
{ char a; int b; long c; }
 u = 1;

field a is initialized with the value 1 on a char. It is then more convenient to define the largest
field first to be sure to initialize all the union byte.

EXERCISES

1. Declare an array of 40 employees for the structure defined in question1. Also write

statements to assign the following values to the employee [6].
 Employee id = “Your_roll_no” salary = 30,000 and department = “IT dept”

2. Write a function that prints the highest salaried person amongst the employees defined
in question 1.

Programming Languages Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 45

4. How much memory is allocated for obj1 in the following code?

union x
{

int i[(int)ceil(your_roll_number/2)]; //declare an array
//having as many elements as your //half of your roll
number

 char c;
 float f;
} obj1;

Programming Languages Lab Session 16
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 46

Lab Session 16
OBJECTIVE

Graphics in C

THEORY

There are two ways to view the display screen in Turbo C graphics model:

 The Text Mode
 The Graphics Mode.

The Text Mode

In the Text Mode, the entire screen is viewed as a grid of cells, usually 50 rows by 80
columns. Each cell can hold a character with certain foreground and background colors (if the
monitor is capable of displaying colors). In text modes, a location on the screen is expressed
in terms of rows and columns with the upper left corner corresponding to (1,1), the column
numbers increasing from left to right and the row numbers increasing vertically downwards.

The Graphics Mode

In the Graphics Mode, the screen is seen as a matrix of pixels, each capable of displaying one
or more color. The Turbo C Graphics coordinate system has its origin at the upper left hand
corner of the physical screen with the x-axis positive to the right and the y-axis positive going
downwards.

The ANSI Standard Codes

The ANSI – American National Standards Institute provides a standardized set of codes for
cursor control. For this purpose, a file named ANSI.sys is to be installed each time you turn
on your computer. Using the config.sys file, this job is automated, so that once you’ve got
your system set up, you don’t need to worry about it again. To automate the loading of
ANSI.sys follow these steps:

1. Find the file ANSI.sys in your system. Note the path.
2. Find the config.sys file. Open this file and type the following:

DEVICE = path_of_ANSI.sys
3. Restart your computer.

All the ANSI codes start by the character \x1B[after which, we mention codes specific to
certain operation. Using the #define directive will make the programs easier to write and
understand.

LIBRARY FUNCTIONS

initgraph():

This function initializes the graphics system by loading a graphics driver from disk (or

Programming Languages Lab Session 16
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 47

validating a registered driver) then putting the system into graphics mode. initgraph also
resets all graphics settings (color, palette, current position, viewport, etc.) to their defaults,
then resets graphresult to 0.
Declaration:
void far initgraph(int far *graphdriver, int far *graphmode, char far *pathtodriver);

*graphdriver:
Integer that specifies the graphics driver to be used. *graphmode : Integer that specifies the
initial graphics mode (unless *graphdriver =DETECT).
If *graphdriver = DETECT, initgraph sets *graphmode to the highest resolution available for
the detected driver.

pathtodriver : Specifies the directory path where initgraph looks for graphics drivers
*pathtodriver. Full pathname of directory, where the driver files reside. If the driver is not
found in the specified path, the function will search the current directory for the .BGI files.

closegraph():

This function switches back the screen from graphcs mode to text mode. It clears the
screen also. A graphics program should have a closegraph function at the end of graphics.
Otherwise DOS screen will not go to text mode after running the program. Here, closegraph()
is called after getch() since screen should not clear until user hits a key.

EXERCISES

1. Write down program statements to initialize the graphics mode of operation.

2. Which header file is required to be included while working in (a) text mode (b)

graphics mode?

3. Name the functions used to clear the screen in (a) text mode (b) graphics mode

Programming Languages Lab Session 17
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 48

Lab Session 17
OBJECTIVE

Executing Different Functions in Graphics

THEORY

outtextxy():

Function outtextxy() displays a string in graphical mode. You can use different fonts, text sizes,
alignments, colors and directions of the text. Parameters passed are x and y coordinates of the
position on the screen where text is to be displayed.
Declaration:
void far outtextxy(int x, int y, char *text);

circle():

circle() function takes x & y coordinates of the center of the circle with respect to left top
of the screen and radius of the circle in terms of pixels as arguments.
Declaration:
void far circle(int x, int y, int radius);
(x,y): Center point circle. radius: Radius of circle.

rectangle() & drawpoly():

To draw a border, rectangle and square use rectangle() in the current drawing color, line style
and thickness. To draw polygon with n sides specifying n+1 points, the first and the last point
being the same.
Declaration:
void far rectangle(int left, int top, int right, int bottom);
void far drawpoly(int numpoints, int far *polypoints);
(left,top) is the upper left corner of the rectangle, and (right,bottom) is its lower right corner.
numpoints: Specifies number of point.s

olypoints:

Points to a sequence of (numpoints x 2) integers. Each pair of integers gives the x and y
coordinates of a point on the polygon. To draw a closed polygon with N points, numpoints
should be N+1 and the array polypoints[] should contain 2(N+1) integers with first 2 integers
equal to last 2 integers.
Following is an example that displays different shapes in graphics mode (Circle, Rectangle and
Line etc.)

void main(void)

Programming Languages Lab Session 17
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 49

{
int gm,gd=DETECT;
initgraph(&gd,&gm,”path”);
circle(100,100,50);
outtextxy(75,170,”Circle”);
rectangle(200,50,350,150);
outtextxy(240,170,” Rectangle”);
line(100,250,540,250);
outtextxy(300,260,”Line”);
ellipse(500,100,0,360,100,50);
outtextxy(480,170,”Ellipse”);
getch();
closegraph();
}

EXERCISES

1. Write a program to draw a circle whose diameter should be equivalent to the width of the
screen and an ellipse whose center should be at center of screen.

Programming Languages Lab Session 17
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 50

2. Write a program to simulate a countdown timer from 5 to 0 in center of screen. The
desired font color is CYAN, font style is TRIPLEX_FONT and font size is 10. Hint: You
may have to use itoa() function.

Programming Languages Lab Session 17
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 51

3. Identify the error(if any) in the following code:

 #include<conio.h>
 void main()
 {
 int gd=DETECT, gm;
 initgraph(&gd, &gm, "c:\\turboc3\\bgi ");
 circle(200,100,150);
 getch();
 closegraph();
 }

4. Write a program that draws a circle using putpixel() function.

__

Programming Languages Lab Session 19
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 52

Lab Session 18
OBJECTIVE

Study of Pointer Variables

THEORY

A pointer provides a way of accessing a variable without referring to the variable directly. The
address of the variable is used.
The declaration of the pointer ip,
 int *ip;
means that the expression *ip is an int. This definition set aside two bytes in which to store the
address of an integer variable and gives this storage space the name ip. If instead of int we
declare
 char * ip;

again, in this case 2 bytes will be occupied, but this time the address stored will be pointing to a
single byte.

EXERCISES

1. Give the function definition for the following function declarations:

i. void sort (char **x ,int no_of_strings);
// Sorts the strings in alphabetical order

Programming Languages Lab Session 19
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 53

ii. char* strstr(char *s1, char *s2);
//Returns the pointer to the element in s1 where s2 begins.

iii. int strlen (char *str);
// Determines length of string

Programming Languages Lab Session 19
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 54

iv. void swap (int *x, int *y);
// You can NOT declare any variable in the function definition

Programming Languages Lab Session 20
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 55

Lab Session 19
OBJECTIVE

Pointers and Arrays

THEORY

There is an inherent relationship between arrays and pointers; in fact, the compiler
translates array notations into pointer notations when compiling the code, since the
internal architecture of the microprocessor does not understand arrays.An array name can be thought
of as a constant pointer. Pointer can be used to do any operation involving array subscript. Let us
look at a simple example.

An example:

/*Pointers and Arrays*/
void main(void)
{
int arr[4]={1,2,3,4}; /*Initializing 4-element
integer type array*/
for(int indx=0;indx<4;indx++)
printf(\n%d ,arr[indx]);
for(int indx=0;indx<4;indx++)
printf(\n\t%d ,*(arr+indx));/*arr is a constant pointer
referring to 1st element*/
int *ptr=arr; /*ptr is a pointer variable, storing
base address of array*/
for(int i=0;i<4;i++)
printf(\n\t\t%d ,*ptr++);/*ptr will be incremented(by 2-
byte) on the bases of its type*/
getch();
}

EXERCISES

1. Write pointer notation equivalent to the following array notations:

a. arr[10] : _____________________________________

b. arr2D[5][6] : _____________________________________

2. Using dynamic memory allocation, declare an array of the length user wants. Take input
in that array and then print all those numbers, input by the user, which are even. The
verification of whether a number is even or not should be done via macro.

Programming Languages Lab Session 20
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 56

Programming Languages Lab Session 20
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 57

Programming Languages Lab Session 21
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 58

Lab Session 20

OBJECTIVE

Pointers as Function Arguments

THEORY

One of the best things about pointers is that they allow functions to alter variables outside of
their own scope. By passing a pointer to a function you can allow that function to read and

write to the data stored in that variable. Say you want to write a function that swaps the values of
two variables. Without pointers this would be practically impossible, following is an example
showing its application.

#include <stdio.h>

int swap_ints(int *first_number, int *second_number);

int
main()
{
 int a = 4, b = 7;

 printf("pre-swap values are: a == %d, b == %d\n", a, b)

 swap_ints(&a, &b);

 printf("post-swap values are: a == %d, b == %d\n", a, b)

 return 0;
}

int
swap_ints(int *first_number, int *second_number)
{
 int temp;

 /* temp = "what is pointed to by" first_number; etc... */
 temp = *first_number;
 *first_number = *second_number;
 *second_number = temp;

 return 0;
}

Programming Languages Lab Session 21
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 59

EXERCISES

1. Using pointers, write a program that takes a string as input from user and calculates the

number of vowels in it.

Programming Languages Lab Session 21
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 60

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 61

Lab Session 21

OBJECTIVE

Working with Files

THEORY

A majority of programs need to read and write data to disk-based storage systems. This is to be
done to provide permanent storage of data. Disk I/O operations are performed on entities called
files A file is a collection of bytes that is given a name. The various ways file I/O can be
performed in C form a number of overlapping categories, which include Standard I/O and
System I/O.

When accessing files through C, the first necessity is to have a way to access the files. For C File
I/O you need to use a FILE pointer, which will let the program keep track of the file being
accessed. For Example:

FILE *fp;

To open a file you need to use the fopen function, which returns a FILE pointer. Once you've

opened a file, you can use the FILE pointer to let the compiler perform input and output

functions on the file.

FILE *fopen(const char *filename, const char *mode);

Here filename is string literal which you will use to name your file and mode can have one of the

following values

w - open for writing (file need not exist)

a - open for appending (file need not exist)

r+ - open for reading and writing, start at beginning

w+ - open for reading and writing (overwrite file)

a+ - open for reading and writing (append if file exists)

To close a function you can use the function:

int fclose(FILE *a_file);

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 62

fclose returns zero if the file is closed successfully.

Data can be written to and read from the files in different ways using different functions. These
functions include:

Character IO

int getc(FILE *stream);
getc returns the next character on the given input stream and increments the stream's file pointer
to point to the next character.

int putc(int c, FILE *stream);
putc outputs the character given by c to the stream given by stream.

String IO

char *fgets(char *s, int n, FILE *stream);
fgets reads characters from stream into the string s. It stops when it reads either n – 1 characters
or a newline character, whichever comes first. fgets retains the newline character at the end of s
and appends a null byte to s to mark the end of the string.

int fputs(const char *s, FILE *stream);
fputs copies the null-terminated string s to the given output stream. It does not append a newline
character, and the terminating null character is not copied.

Formatted IO

int fscanf (FILE *stream,const char *format [,address,...]);
Scans and formats input from a stream

int fprintf (FILE *stream, const char* format[,argument,...]);
fprintf sends formatted output to a stream

Record IO
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);
fread reads a specified number of equal-sized data items from an input stream into a block.

size_t fwrite(void *ptr, size_t size,size_t n, FILE* stream);
fwrite appends a specified number of equal-sized data items to an output file.

EXERCISES

1. Write a program that takes input the names of the subjects from the user and write them
on to the file Subject.txt.

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 63

2. Using formatted IO; write the information about a book onto a file which might be taken

as input from user. Book information includes its ISBN number, title and price.

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 64

3. Write down necessary statements to open a file document.txt for reading and appending

in binary mode.

4. Write down a single statement to write the records of 15 employees as declared in

question 2 of Lab Session 09 on to the file document.txt.

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 65

Lab Session 22
OBJECTIVE

Linked List
THEORY

Form the term dynamic memory allocation, we mean that, the size of memory allocated for holding
data can grow as well as shrink, on the time of execution. This will effectively help in managing
memory since a predefined memory chunk can either be too large or insufficient. Linked list is one of
the way of obtaining dynamic data structures in which collection of data items (structures) are lined
up in a row and the insertion and deletion can be made any where in the list. Each member of the
linked list (node) is connected to another by a pointer which holds the address of the next node. The
pointer of the last node points to NULL, which means end of list. With the help of linked list we can
implement a complex data base system. following are some important building blocks and functions
used in dynamic memory allocation.

malloc()

It takes as an argument the number of bytes to be allocated and on call, returns a pointer of type void

to the allocated memory. This pointer can be assigned to a variable of any pointer type. It is normally
used with sizeof operator.

ptr = malloc (sizeof(struct node));
The sizeof() operator determines the size in byte of the structure element node. If no memory is
available malloc() returns NULL.

free()

The function free() deallocates memory. It takes as an argument the pointer to the
allocated memory which has to be freed.

free(ptr);

Let s explore some of the basic features of linked list from the following example. Here we have
implemented a small record holding program. It asks from the user about the employee s name and
his identification number. For that we have declared a stricture emp capable of holding above
mentioned fields along with the address of next node. The program has two user defined functions
creat() and lstal() to perform the functions of growing nodes and listing the data of all nodes
respectively.

#include<conio.h>
#include<stdio.h>
#include<stdlib.h>

#include<alloc.h>
#include<dos.h>
struct emp
{
int perno;
char name[20];

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 66

struct emp *ptnxt;
};
struct emp *ptcrt,*ptfst,*ptlst; // declaring pointer to
current, first and last nodes
void creat(void); // Creates a node
void lstal(void); // List the all data
void main(void)
{
clrscr();
ptfst=(struct emp*)NULL; // Initializing 1st pointer in
the beginning
char ch;
while(1)
{
printf("\ n\ nEnter Option\ nc to creat \ nd to display all
entries\ nt to terminate");
printf("\ n\ t\ t\ t Your Option:");
ch=getche();
switch(ch)
{
case 'c':
creat();
break;
case 'd':
lstal();
break;
case 't':
printf("\ n\ nThanks");
getch();
exit(0);
}
}
}
void creat(void)
{
struct emp *pttemp;
pttemp=(struct emp*)malloc(sizeof(struct emp));//
Generating a node
char temp[20];
if(ptfst == (struct emp*)NULL)
{
ptfst = pttemp;
ptlst = pttemp;
}
ptlst->ptnxt=pttemp;
fflush(stdin);
printf("\ n\ nENTER NAME:");
gets(pttemp->name);
fflush(stdin);
printf("ID NO:");
gets(temp);
pttemp->perno=atoi(temp);
pttemp->ptnxt=(struct emp*)NULL;
ptlst=pttemp;
}
void lstal(void)
{
ptcrt=ptfst; // Starting from the first node
while(ptcrt!=(struct emp*)NULL)

{
printf("\ n\ n%s",ptcrt->name);
printf("'s id is %d",ptcrt->perno);
ptcrt=ptcrt->ptnxt; // Updating the address for next node
}
}

Programming Languages Lab Session 22
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 67

EXERCISES

1. Write a program that could delete any node form the linked list. Also make use of
free() function.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Programming Languages Lab Session 24
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 68

Lab Session 23
OBJECTIVE

File and Directory Manipulation Functions

THEORY

File Manipulation is a key task to be performed by C programs, because all applications and

data reside in files. If you develop an application, it is likely to use files for storage of its data

and results so that they can be reused at a later date. File manipulation covers routines that

enable us to determine the status of a file and to perform certain operations to keep them in

order. These functions are included in the header file <io.h>.

The Directory Manipulation routines in Turbo C++ provide the basic tools necessary to

create, modify and remove directories from the C program. The header file <dir.h> includes

the functions for directory manipulation.

int chdir(const char *path);
chdir causes the directory specified by path to become the current working directory. Path
must specify an existing directory.

int setdisk(int drive);
drive designating the new drive to which the current drive will be set.

int getdisk(void);
getdisk returns the current drive number (0 = A, 1 = B, 2 = C, etc.)

int mkdir(const char *path);
mkdir creates a new directory from the given path.

int rmdir(const char *path);
rmdir deletes the directory whose path is given by path.

char *getcwd(char *buf, int buflen);
getcwd gets the current working directory.

void fnmerge char *path, char *drive, char *dir, char *name, char *ext);
fnmerge make a full path name from components.

int fnsplit(char *path, char *drive, char *dir, char *name, char *ext);
fnsplit take a file's full path name as a string, split the name into its four components, then
store those components.

Programming Languages Lab Session 24
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 69

fnmerge and fnsplit are invertible. If you split a given path with fnsplit, then merge the
resultant components with fnmerge, you end up with the path.

long filelength(int handle);

filelength returns the length (in bytes) of the file associated with handle.
The file handle may be determined by using the macro fileno.

int fileno(FILE *stream);
fileno is a macro that returns the file handle for the stream.

int remove(const char *filename);
remove deletes the file specified by filename.

int rename(const char *oldname, const char *newname);
rename changes the name of a file from oldname to newname. If a drive specifier is given in
newname, the specifier must be the same as that given in oldname. Directories in oldname and
newname do not need to be the same, so rename can be used to move a file from one directory
to another.

EXERCISES

1. Name the header files that contain file and directory manipulation functions.

2. Write down a program that asks the user for a file name and then displays the length of

that file in bytes.

Programming Languages Lab Session 24
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 70

3. Write a program to create a directory xxx (where xxx is your first name). Copy the

noname00 file from tc\bin\ to xxx. Now delete this noname00 from xxx and then also
delete the directory xxx.

Programming Languages Lab Session 245
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 71

Lab Session 24
OBJECTIVE

Command Line Arguments

THEORY

main() is a function that can accept arguments just like other functions. It can also return a
value. main() receives arguments from the command line. Use of arguments in the command
line is a useful feature.

Consider the following program statement:

void main(int argc, char *argv[])

main() always receives two arguments. The first argument ‘argc’ is the number of command
line arguments and the second argument ‘argv’ is an array of pointers to the individual
arguments. Any of the element may be accessed by referring to them as *(argv + 1), *(argv
+2), and so on (or in the array notation, argv[1], argv[2]). The first string, *(argv +0), is the
full path name of the program itself.

The names argc (for Argument Count) and argv (Argument Value) are traditionally used in
these roles, but any other name could be used instead.

To pass arguments to the main function you first need to create the exe file of the program.
Consider, for example, your program named First.cpp, that would print the total number of
arguments passed and their values. To create the exe file for this program, go to the Compile
Menu and click on Make, or directly press F9. To execute this program, go to the command
prompt and write down the following command:

c:\tc\bin> First

This will simply pass one argument to the main. Hence the value of argc will be 1 and *(argv
+ 0) = “c:\tc\bin\First.exe”.

The following statement will pass 4 arguments to the main function:

c:\tc\bin> First 5 2.3 “Programming Languages”

where: argc = 4
*(argv + 0) = c:\tc\bin\First.exe
*(argv + 1) = 5
*(argv + 2) = 2.3
*(argv + 3) = Programming Languages

Programming Languages Lab Session 245
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 72

Note that all these arguments are strings. They are not treated as their original data type. To
print these values simply execute a loop argc times and each time print the required contents
using *(argv + i) or arg[i] with the format specifier being %s.

In order to return a value from main, it is required to specify the data type instead of ‘void’
before the function name. Finally, a return statement is to be used. The following program

returns an integer.

int main(void)
{
int num;
printf(“Enter a number”);
scanf(“%d”, &num);
return num;
}

EXERCISES

1. When a program is executed, how many arguments are passed to the main by default?

2. What is the value of the argument passed to main by the operating system?

3. Write a small program that uses the alternate main() declaration syntax given above. In the

body of your main function, just print the value of argc. Compile your program and run it
with various numbers of arguments.
__

__

__

__

__

__

__

Programming Languages Lab Session 245
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 73

__

4. Write down the command to pass the string “C is my favorite programming lanuage” as

argument to the program comline, whose exe file is present in the folder c:\tc\bin.

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 74

Lab Session 25
OBJECTIVE

Variable Length Arguments

THEORY

Usually, when we write a function, we know beforehand the number and type of arguments

that it will take. In certain cases it is not known what would be the arguments to the functions.

Functions like printf, scanf etc can take a variable number of arguments. The parameter-

passing conventions in C help us to access a variable number of arguments. Upon entry to the

function the first argument appears on the stack (a special data structure that is used to hold

the arguments and addresses of functions) just above the return address (meaning it has the

next higher address). Additional arguments have successively higher addresses. If you could

get to the first argument on the stack and you knew the size of all other arguments you could

retrieve the arguments one by one. This is done by the va_start and va_arg macros. While the

macros help us access the arguments on the stack, they cannot tell us when the argument list

ends. This is done by adopting a convention. If each argument were a pointer, for example,

you could mark the end of the argument list with a NULL value.

Suppose, we are writing a function findmax to accept a variable number of integers and

return the largest of the arguments. Since, we want positive numbers only, we assume that a

value of –9999 indicates the end of argument list. Here is one way to implement the findmax

function.

 int findmax(int firstint, ...)

 {

 int maxval = -9999, x = 0;

 va_list argp;

 // Get the first optional parameter using “va_start”

 va_start(argp, firstint);

 x = firstint;

 while(x != -9999) //-9999 marks the end of arguments

 {

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 75

 if(maxval<x) maxval = x;

 x = va_arg(argp, int);

 }

 return (maxval);

 }

The variable argp of type va_list is used to point to arguments. The first step in accessing the

arguments is to use va_start to initialize argp. The ANSI standard requires that a function accepting a

variable number of arguments must have at least one argument. The va_start macro uses the address of

this compulsory first argument to set up argp. Once this is done, you can get subsequent arguments by

repeatedly using the va_arg macro.

Consider the following implementation of the C printf function.

#include<stdio.h>

#include<conio.h>

#include<stdarg.h>

#include<stdlib.h>

void print(char *ptr, ...);

void putstring(char *ptr);

void main(void)

{

clrscr();

print("%c",'H');

getch();

}

void print(char *ptr, ...)

{

 char * string;

 va_list arg_ptr;

 int integer;

 char buffer[20], ch, *p;

 double d_value;

 int x,y;

 string = ptr;

 va_start(arg_ptr,ptr); //initialize the list

 while(*string!='\0')

 {

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 76

 if(*string!='%' && *string!='\n' &&

*string!='\t')

 /*if not a

format specifier or escape character*/

 putch(*string++); //then print the

character as it is

 else

 if(*string == '%') //if a format

specifier

 {

//then

extract the

next

character to

find its data

type

string++;

 switch(*string)

//different

data types

are to be

dealt

differently

 {

 case 'd': //integer

 integer=va_arg(arg_ptr,int); //retrieve

an integer from the list

//to print this integer change it to ASCII

 itoa(integer,buffer,10);

 putstring(buffer);

//puts

gives

linefeed so

we make

our own

function

 break;

 case 'x': //Hex

 integer=va_arg(arg_ptr,int); //retrieve

an integer from the list

//To print this integer change it to

ASCII

 itoa(integer,buffer,16); //16 for Hex

 putstring(buffer);

// puts gives

linefeed so

we make

our own

function

 break;

 case 'f': //float

d_value=va_arg(arg_ptr,double);

 gcvt(d_value,10,buffer);

 putstring(buffer);

 break;

 case 'c': //character

 ch=va_arg(arg_ptr,char);

 putch(ch);

 break;

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 77

 case '%': //user wants to

print the % sign

 putch('%');

 break;

 case's': //string

 p=va_arg(arg_ptr,char*);

 putstring(p);

 break;

 default:

 return;

 } //switch

ends

 string++;

 } //if

ends

 else if(*string=='\n') //An Escape

Sequence: \n

 {

 putch('\n');

 putch('\r');

 string++;

 }

 else if(*string=='\t') //An Escape

Sequence: \t

 {

 x=wherex();

 y=wherey();

 x+=8;

 x%=80;

 if(x<8)

 y++;

 if(y>25)

 {

 y=25;

 putch('\n');

 putch('\r');

 }

 gotoxy(x,y);

 string++;

 } //else

ends

 }

 //while ends

}

 //print ends

void putstring(char *ptr)

{

 while(*ptr!='\0')

 putch(*ptr++);

}

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 78

EXERCISES

1. Show output of the following program.

void main(void)

{

 clrscr();
 char ch='H';
 int i=5;
 char string[]="Programming Languages";

 print("Character:\t%c\nInteger:\t%d\nString:\t%s\n
 Percentage:\t%f%%",ch,i,string,83.21);

 getch();
}

2. Implement the scanf() function using Variable Length Arguments.

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 79

Programming Languages Lab Session 25
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 80

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 81

Lab Session 26

OBJECTIVE

Hardware Interfacing through User-developed Programs

THEORY
 Hardware interfacing is a very important feature of C language. There are various approaches to

interact with the hardware. These include:

 Using high level language functions
 Using ROM-BIOS functions (routines)
 Using DOS functions (routines) stored in the file IO.sys and MSDOD.sys
 Directly programming the hardware.

You may decide to employ any one of these approaches in your programs, but the one, which
directly programs the hardware, would run fastest. At the same time this is the one, which is
the most unreliable. This is because, first, the programmer must have a detailed knowledge of
the hardware he is trying to program. Secondly, the programs that we write for one type of
hardware may not be portable to another computer, which has a different hardware. The
programs, which use High Level Language functions to interact with the hardware are no
doubt the most reliable, but work very slowly. Moreover, you are limited by what the
functions have been designed to do. So, it is preferred to use the other two approaches i.e.
either the ROM BIOS or the DOS functions.

To receive a byte of data from a particular particular the macro inp or the function inportb
may be used. Similarly to receive a word of data from a particular port the macro inpw or the
function inport may be used.

int inp(unsigned portid);
reads a byte from a hardware port

unsigned inpw(unsigned portid);
reads a word from a hardware port

unsigned char inportb(int portid);
inportb reads a byte from a hardware port

int inport(int portid);
reads a word from a hardware port

int outp(unsigned portid, int value);
outputs a byte to a hardware port

unsigned outpw(unsigned portid, unsigned value);
outputs a word to a hardware port

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 82

void outportb(int portid, unsigned char value);
outputs a byte to a hardware port

void outport(int portid, int value);
outputs a word to a hardware port

The int86() Function

The function used to make a software interrupt occur and thereby invoke a ROM-BIOS
function is a standard library function called int86(). The ‘int’ stands for ‘interrupt’ and the
‘86’ refers to the 8086 family of microprocessors. The function needs three arguments:

 Interrupt number corresponding to the ROM-BIOS function to be invoked
 Two union variables

The first union variable represents values being sent to the ROM-BIOS routine, and the
second represents the values being returned from the ROM-BIOS routines to the calling C
program. The values are passed to and returned from ROM-BIOS routines through CPU
registers.

Consider the following functions to access the color palette:

void set_color(int color, char red, char green, char blue)
{
 union REGS r;
 r.h.ah = 0x10;
 r.h.al = 0x10;

r.x.bx = color;//assign values to be sent to the ROM-BIOS
r.h.ch = green;
r.h.cl = blue;
r.h.dh = red;
int86(0x10,&r,&r); //call service 10 hex

}

void get_color(int color, char *red, char *green, char *blue)
{
 union REGS r;

r.h.ah = 0x10;
r.h.al = 0x15;
r.x.bx = color;
int86(0x10,&r,&r); //call service 10 hex
*green = r.h.ah;
*blue = r.h.cl;
*red = r.h.dh;

}

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 83

These functions can broaden the range of colors from 16 to 256. Now we use the above
functions in a program as:
void main(void)
{
 char r,g,b;
 int color= RED;

int *driver = DETECT, *mode;
 initgraph(driver, mode, ”c:\\tc\\bgi”);
 get_color(color, &r, &g, &b); //get components of

//original color
 set_color(color,r+100, g-200,b); //set new color values
 setbkcolor(color); //use the C built-in function to

//set the background to your //desired color

 getch();
 closegraph();
}

EXERCISES

1. Implement the functionality of gotoxy() which is used to place the cursor at the desired
location on the screen by specifying the x and y coordinates. For this first select the active
page, for that generate interrupt with interrupt number 0x10, service number is 5 hex and
Page number (in this case insert 1) in register al. Then use following data to move the
cursor:
 Interrupt Number: 0x10 (Interrupt for Video routines)

Input registers: ah (Service number) = 2 Hex.
 dh = x- coordinate value
 dl = y- coordinate value
Output registers: None

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 84

2. Write a C program that would send a byte of data to the port address 1f Hex.

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 85

Lab Session 27

OBJECTIVE
Parallel Port Interfacing

THEORY

Parallel Port Description:

Parallel port interfacing is a simple and inexpensive tool for building computer controlled devices
and projects. The simplicity and ease of programming makes parallel port popular in electronics
hobbyist world. You can see the parallel port connector in the rear panel of your PC. It is a 25 pin
female (DB25) connector (to which printer is connected). On almost all the PCs only one parallel
port is present, but you can add more by buying and inserting ISA/PCI parallel port cards.In
computers, ports are used mainly for two reasons: Device control and communication. We can
program PC's Parallel ports for both purposes. In PC there is always a D-25 type of female
connector having 25 pins, the function of each pins are listed below.

Parallel ports are easy to program and faster compared to the serial ports. But main disadvantage
is it needs more number of transmission lines. Because of this reason parallel ports are not used in
long distance communications. The Pins having a bar over them means that the signal is inverted
by the parallel port's hardware. If a 1 were to appear on the 11 pin [S7], the PC would see a 0.
Only the Data Port will be covered in this Lab.

Sending Commands to the Data Port

Sending commands involves only the data pins [D0 to D7].Though it is possible to use the some
other pins as input, we'll stick to the basics. The word "Parallel" denotes sending an entire set of 8
bits at once [That's why Parallel Port term]. However we can use the individual pins of the port ;
sending either a 1 or a 0 to a peripheral like a motor or LED.

Example:

#include <stdio.h>
#include <conio.h>
#include <dos.h>
void main(void)
{
outportb(0x378,0xFF);
}

Now take an LED and put one terminal at pin2 and the other to pin 18,it would glow.[Use a 2K
resistor in series with the LED, otherwise you'll end up ruining your LED, or source too much
current from the port pin] To switch it off Use this command outportb(0x378,0x00); Instead of the
line outportb(0x378,0xFF);
Explaination of outportb(0x378,0x00) & outportb(0x378,0xFF) cmmands:

0x378 is the parallel port address.For a typical PC, the base address of LPT1 is 0x378 and of PT2
is 0x278. The data register resides at this base address , status register at base address + 1 and the

Programming Languages Lab Session 27
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 86

control register is at base address + 2. So once we have the base address , we can calculate the
address of each registers in this manner. The table below shows the register addresses of LPT1
and LPT2.

Register LPT1 LPT2

data registar(baseaddress + 0) 0x378 0x278
status register (baseaddress + 1) 0x379 0x279
control register (baseaddress + 2) 0x37a 0x27a
0x00 is the command appearing at the output pins. The Format is in Hexadecimal So if u want to
make pin no 2 high, that's the first data pin, send 0x01 to the parallel port. 0x01 which would
mean 0000 0001 for the data port. Similarly for other pins.

EXERCISE

1. Construct an interfacing circuit to control the direction of DC motor using the parallel
port.

Programming Languages Lab Session 29
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 87

Lab Session 28
OBJECTIVE

Mouse Interfacing using Programs in C-Language

THEORY

Mouse is a hardware device, and it may be interfaced in C programs using the ROM-BIOS

routines. Using these routines, the mouse may be initialized and by supplying different values

(service numbers) to the AX register and issuing the interrupt number 33h, different mouse

functions may be accessed. Consider the following code that displays the current x and y

coordinates and also whether a particular mouse button is pressed or not. For this purpose,

first the mouse is initialized, its region of operation is specified and the mouse pointer is

displayed. Then a function is developed to retrieve the mouse coordinates and the button

status:

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <graphics.h>
#include <stdlib.h>

union REGS i,o;
int initmouse(void); //initializes mouse
void showmouseptr(void); //dispalys mouse pointer
void restrictmptr(int x1,int y1,int x2,int y2); //restricts mouse movement

void getmousepos(int *button, int *x, int *y); //get mouse coordinates & button status

void main (void)
{
 clrscr();
 int *driver=DETECT, *mode; //graphics driver

 int gm, maxx,maxy,x,y,button;
 char display[30];
 initgraph(driver, mode, "c:\\tc\\bgi");
 maxx=getmaxx(); // Find maximum x screen coordinate
 maxy=getmaxy(); // Find maximum y screen coordinate
 gotoxy(26,1);
 printf("Mouse Demonstration Program");

 if(initmouse()==0) //initialize mouse

 {
 outtextxy(400,425,"Cannot Initialize Mouse...");
 outtextxy(400,450,"Press any key to exit...");
 getch();

Programming Languages Lab Session 29
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 88

 exit(0);
 }

 gotoxy(1,2);
 printf("Left Button");
 gotoxy(15,2);
 printf("Right Button");

 //define the region for mouse

 restrictmouseptr(1,57, maxx-1, maxy-1);
 showmouseptr(); //display mouse

 while(!kbhit()) //unless the user presses a key
 {
 getmousepos(&button,&x,&y); //get the current mouse position
 gotoxy(5,3);
 (button&1)==1 ? printf("DOWN"):printf("UP ");//Left Button Press/Release

 gotoxy(20,3);
 (button&2)==2 ? printf("DOWN"):printf("UP "); //Right Button Press/Release

 gotoxy(55,2);
 printf("X: %d Y: %d ",x,y); //Current X and Y coordinates

 }

 getche();
 closegraph();
}

int initmouse(void) //initializes mouse

{
 i.x.ax=0;
 int86(0x33,&i,&o);
 return(o.x.ax);
}

void showmouseptr(void) //displays mouse pointer

{
 i.x.ax=1;
 int86(0x33,&i,&o);
}

void restrictmouseptr(int x1,int y1, int x2, int y2) //restricts mouse movement

{
 i.x.ax = 7;
 i.x.cx = x1;
 i.x.dx = x2;
 int86(0x33,&i,&o);
 i.x.ax = 8;
 i.x.cx = y1;
 i.x.dx = y2;
 int86(0x33,&i,&o);
}

Programming Languages Lab Session 29
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 89

void getmousepos(int *button, int *x, int *y)
//get mouse coordinates and button status

{
 i.x.ax = 3;
 int86(0x33,&i,&o);
 *button = o.x.bx;
 *x = o.x.cx;
 *y = o.x.dx;
}

EXERCISES

1. Extend the above program to draw a small rectangle (like a popup menu) whenever the
user press the right mouse button.

Programming Languages Lab Session 29
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 90

2. Write the code for hiding the Mouse.

Programming Languages Lab Session 30
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 91

Lab Session 29

OBJECTIVE
Type and Storage Classes

THEORY

Every variable in C programming has two properties: type and storage class.

Type refers to the data type of a variable. And, storage class determines the scope and
lifetime of a variable.There are 4 types of storage class:

1. automatic
2. external
3. static
4. register

Local Variable

The variables declared inside the function are automatic or local variables.The local
variables exist only inside the function in which it is declared. When the function
exits, the local variables are destroyed.

int main()
{
 int n; // n is a local varible to main() function

}

void func() {
 int n1; // n1 is local to func() fucntion
}

Global Variable

Variables that are declared outside of all functions are known as external variables.
External or global variables are accessible to any function.

Example #1: External Variable

#include <stdio.h>
void display();

Programming Languages Lab Session 30
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 92

int n = 5; // global variable

int main()
{
 ++n; // variable n is not declared in the main() function
 display();
 return 0;
}

void display()
{
 ++n; // variable n is not declared in the display() function
 printf("n = %d", n);
}

Output

n = 7

Suppose, a global variable is declared in file1. If you try to use that variable in a
different file file2, the compiler will complain. To solve this problem,
keyword extern is used in file2 to indicate that the external variable is declared in
another file.

Register Variable

The register keyword is used to declare register variables. Register variables were
supposed to be faster than local variables. However, modern compilers are very good
at code optimization and there is a rare chance that using register variables will make
your program faster. Unless you are working on embedded system where you know
how to optimize code for the given application, there is no use of register variables.

Static Variable

A static variable is declared by using keyword static. For example;

static int i;

Programming Languages Lab Session 30
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 93

The value of a static variable persists until the end of the program.

Example #2: Static Variable

#include <stdio.h>
void display();

int main()
{
 display();
 display();
}
void display()
{
 static int c = 0;
 printf("%d ",c);
 c += 5;
}

Output

0 5

During the first function call, the value of c is equal to 0. Then, it's value is increased
by 5.During the second function call, variable c is not initialized to 0 again. It's
because c is a static variable. So, 5 is displayed on the screen.

Programming Languages Lab Session 30
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 94

Lab Session 30

OBJECTIVE

Project
THEORY

Select a project based on the following areas

1) Hardware interfacing(e.g. controlling of home appliances, stepper
motor control, virtual instrumentation etc)
2) Database management system (e.g. Hospital management system,
Payroll system etc)
3) Graphical interface(e.g. Scientific calculator, Snake game, Brick
game etc)
Also prepare a report on your project.

	Practical Workbook
	Programming Languages
	Department of Computer & Information Systems Engineering
	NED University of Engineering & Technology

	Department: _____________________________
	Teacher : _____________________________
	Lab Session 01
	To invoke the IDE from the windows you need to double click the TC icon.
	To do so from the command prompt go in the specific directory and type ‘tc’. This makes you enter the IDE interface, which initially displays only a menu bar at the top of the screen and a status line below will appear. The menu bar displays the menu ...
	Opening New Window

	When the Edit window is active, the program may be typed. Use the certain key combinations to perform specific edit functions.
	Compiling the Source Code
	Creating an Executable File with the Linker
	The Development Cycle

	Lab Session 02
	1. Type the following program in C Editor and execute it. Mention the Error (if any).

	Lab Session 03
	One Step at a Time
	Resetting the Debugger
	Watches

	Lab Session 04
	Lab Session 05
	Decision Making in Programming (If, If-else)
	Typecasting

	Lab Session 06
	Decision Making in Programming (Switch Case, Ternary Operator)
	Conditional (Ternary) Operator

	Lab Session 07
	The for Loop
	Lab Session 08
	The while Loop

	Lab Session 09
	Continue is another keyword that controls the flow of loops. If you are executing a loop and hit a continue statement, the loop will stop its current iteration, update itself (in the case of for loops) and begin to execute again from the top. Essentia...
	for (player = 1; someone_has_won == FALSE; player++)
	{
	if (player > total_number_of_players)
	{player = 1;}
	if (is_bankrupt(player))
	{continue;}
	take_turn(player);
	}
	This way, if one player can't take her turn, the game doesn't stop for everybody; we just skip her and keep going with the next player's turn.
	Exercise:
	Write a program to calculate sum of maximum of 10 numbers. Negative numbers should be skipped from calculation.
	Lab Session 10
	Types of functions in C programming
	Standard library functions
	User-defined functions
	There are four types of functions depending on the return type and arguments:

	Lab Session 11
	Lab Session 12
	Lab Session 13
	Lab Session 14
	Lab Session 15
	Lab Session 16
	Lab Session 17
	Lab Session 18
	Lab Session 19
	Pointers and Arrays
	Lab Session 20
	Pointers as Function Arguments
	Lab Session 21
	Lab Session 22
	Lab Session 23
	Lab Session 24
	In order to return a value from main, it is required to specify the data type instead of ‘void’ before the function name. Finally, a return statement is to be used. The following program returns an integer.

	Lab Session 25
	Usually, when we write a function, we know beforehand the number and type of arguments that it will take. In certain cases it is not known what would be the arguments to the functions. Functions like printf, scanf etc can take a variable number of arg...

	Lab Session 26
	Lab Session 27
	Lab Session 28
	Lab Session 29
	Local Variable
	Global Variable
	Example #1: External Variable

	Register Variable
	Static Variable
	Example #2: Static Variable

	Lab Session 30

