Practical Workbook
CS-353
Microprocessor and Their Applications
(TCIT)

/Name : \
Year :
Batch
Roll No
Department: /

Department of Computer & Information Systems Engineering
NED University of Engineering & Technology,

INTRODUCTION

Microprocessors play a vital role in the design of digital systems. They are found in a wide range of
applications such as process control, communication systems, digital instruments and consumer
products. Before embedding microprocessor in any system, profound knowledge and full

understanding of the architecture and the instruction set of that microprocessor is imperative.

First two lab sessions provide an in depth coverage of the instruction set of 8088 microprocessor. In next
two lab sessions an Introduction to Assembly Language programming is provided so that the students
have a good knowledge of programming as well as the environments like MASM (Microsoft Macro
Assembler) and TASM etc.

Further laboratory exercises enable the students to enhance their assembly language programming skills.
Interfacing techniques are introduced, which gives students an opportunity to interface various 1/0

devices with the trainer board.

After studying the architecture and instruction set of 8088 microprocessor, students are encouraged to
undertake a mini project. This project enables the students to design their own microprocessor-based

system. Also students are encouraged to take project other than the one mentioned in the table of contents.

Programmable Logic Controllers (PLCs) are microprocessor-based devices used to control industrial
processes or machines. They provide advanced functions, including analog monitoring, control and high
speed motion control as well as share data over communication networks. Programmable Logic
controllers are introduced in the last lab session. Programming PLCs and ladder design are discussed in
detail.

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

CONTENTS

Lab Session Object Page
No. No.
1 Introduction to Assembly Language Programming. 1
2 Running and Debugging the Assembly Program. 9
3 Calling a Subroutine from another Assembly Language File (Near Procedure). 17
4 Introduction to the trainer. 21
5 Using the trainer. 27
6 Learning Data transfer and Stack operation instructions. 31
7 Learning Logic group of instructions (AND, OR and XOR). 35
8 Studying Logic group of instructions (Shift and rotate). 37
9 Studying Transfer of control instructions (Conditional & Un-Conditional jumps). 40
10 Learning Isolated 1/0 instructions. 43
11 Learning Arithmetic group of instructions (Add, Subtract, Multiply and Divide). 45
12 Studying Transfer of control instructions (Call and Return). 50
13 Using ADC/DAC. 53
14 Interfacing Printer with 8088. 55
15 Mini Project
15(a) Learning De-multiplexing of Address/Data bus of 8088 Microprocessor. 58
15(b) Creating input / output device select pulses. 59
15(c) Interfacing 8255PP1 to the 8088 Microprocessor. 60
16 Programmable Logic Controller
16(a) Series-Parallel Logic 62
16(b) 66

Latching Circuits
16(c) Timer Circuits 69

16(d) Counter Circuits 4

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 01

OBJECT
Introduction to Assembly Language Programming
THEORY

ASSEMBLY LANGUAGE SYNTAX
name operation operand (s) comment
Assembly language statement is classified in two types

Instruction
Assembler translates into machine code.
Example:
START: MOV CX, 5 ; initialize counter
Comparing with the syntax of the Assembly statement, name field consists of the label
START:. The operation is MOV, operands are CX and 5 and the comment is ;initialize
counter.

Assembler Directive
Instructs the assembler to perform some specific task, and are not converted into
machine code.
Example:
MAIN PROC
MAIN is the name, and operation field contains PROC. This particular directive creates a
procedure called MAIN.

Name field
Assembler translate name into memory addresses. It can be 31 characters long.

Operation field

It contains symbolic operation code (opcode). The assembler translates symbolic
opcode into machine language opcode. In assembler directive, the operation field
contains a pseudo-operation code (pseudo-op). Pseudo-op are not translated into machine
code, rather they simply tell the assembler to do something.

Operand field
It specifies the data that are to be acted on by the operation. An instruction may
have a zero, one or two operands.

Comment field
A semicolon marks the beginning of a comment. Good programming practice
dictates comment on every line

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Examples: MOVCX, 0 ;move 0 to CX
Do not say something obvious; so:
MOV CX, 0 ;CX counts terms, initially O

Put instruction in context of program
; Initialize registers

DATA REPRESENTATION

Numbers

11011 decimal

11011B binary

64223 decimal

-21843D decimal

1,234 illegal, contains a non-digit character
1B4DH hexadecimal number

1B4D illegal hex number, does not end with
FFFFH illegal hex number, does not begin with digit

OFFFFH hexadecimal number
Signed numbers represented using 2's complement.

Characters
¢ Must be enclosed in single or double quotes, e.g. “Hello”, ‘Hello’, “A”, ‘B’
eencoded by ASCII code
o 'A'has ASCII code 41H
'a" has ASCII code 61H
'0" has ASCII code 30H
Line feed has ASCII code OAH
Carriage Return has ASCII code
Back Space has ASCII code 08H
Horizontal tab has ASCII code 09H

O O O O O O

VARIABLE DECLARATION

Each variable has a type and assigned a memory address.
Data-defining pseudo-ops

DB define byte

DW define word

DD define double word (two consecutive words)
DQ define quad word (four consecutive words)
DT define ten bytes (five consecutive words)

Each pseudo-op can be used to define one or more data items of given type.

2

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Byte Variables

Assembler directive format assigning a byte variable
Name DB initial value
A question mark (“?”) place in initial value leaves variable uninitialized

I DB 4 :define variable | with initial value 4
J DB ? ;Define variable J with uninitialized value
Name DB "Course" ;allocate 6 bytes for name
K DB 53,1 ;allocate 3 bytes
K — 05
03
FF
Other data type variables have the same format for defining the variables.
Like:
Name DW initial value

NAMED CONSTANTS

e EQU pseudo-op used to assign a name to constant.
e Makes assembly language easier to understand.
e No memory allocated for EQU names.

LF EQU 0AH
o MOV DL, 0AH
o MOV DL, LF

PROMPT EQU "Type your name"
o MSG DB “Type your name”
o MDC DB PROMPT

INPUT AND OUTPUT USING DOS ROUTINES

CPU communicates with peripherals through 1/0 registers called 1/0 ports. Two
instructions access 1/0 ports directly: IN and OUT. These are used when fast 1/0 is
essential, e.g. games.

Most programs do not use IN/OUT instructions. Since port addresses vary among
computer models and it is much easier to program 1/0O with service routines provided
by manufacturer.

Two categories of 1/0 service routines are Basic input & output system (BIOS)
routines and Disk operating system (DOS) routines. Both DOS and BIOS routines are
invoked by INT (interrupt) instruction.

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Disk operating system (DOS) routines
INT 21 H is used to invoke a large number of DOS function. The type of called
function is specified by pulling a number in AH register.

For example

AH=1 input with echo

AH=2 single-character output
AH=9 character string output

AH=8 single-key input without echo

AH=0Ah character string input

Single-Key Input

Input: AH=1

Output: AL= ASCII code if character key is pressed, otherwise 0.

To input character with echo:

MOV AH, 1

INT 21H read character will be in AL register
To input a character without echo:

MOV AH, 8

INT 21H read character will be in AL register

Single-Character Output
Input: AH=2,

DL= ASCII code of character to be output
Output: AL=ASCII code of character

To display a character

MOV AH, 2
MOV DL, *?»
INT 21H displaying character'?"

Combining it together:

MOV AH, 1

INT 21H

MOV AH, 2

MOV DL, AL

INT 21H read a character and display it

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

To Display a String
Input: AH=9,

DX= offset address of a string.
String must end with a ‘$” character.

To display the message Hello!

MSG DB “Hello!”

MOV AH,9
MOV DX, offset MSG
INT 2IH

OFFSET operator returns the address of a variable The instruction LEA (load
effective address) loads destination with address of source
LEA DX, MSG

PROGRAM STRUCTURE
Machine language programs consist of code, data and stack. Each part occupies a

memory segment. Each program segment is translated into a memory segment by the
assembler.

Memory models
The size of code and data a program can have is determined by specifying a memory
model using the .MODEL directive. The format is:

.MODEL memory-model

Unless there is lot of code or data, the appropriate model is SMALL

memory-model | description

SMALL One code-segment.

One data-segment.

More than one code-segment.
MEDIUM One data-segment.

Thus code may be greater than 64K
One code-segment.

More than one data-segment.
More than one code-segment.
LARGE More than one data-segment.
No array larger than 64K.
More than one code-segment.
HUGE More than one data-segment.
Arrays may be larger than 64K.

COMPACT

5

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Data segment

A program’s DATA SEGMENT contains all the variable definitions.
To declare a data segment, we use the directive .DATA, followed by variable and
constants declarations.

.DATA

WORD1 DW 2

MASK EQU 10010010B
Stack segment

It sets aside a block of memory for storing the stack contents.
STACK 100H ;this reserves 256 bytes for the stack

If size is omitted then by-default size is 1KB.

Code segment
Contain program’s instructions.

.CODE name

Where name is the optional name of the segment

There is no need for a name in a SMALL program, because the assembler will
generate an error). Inside a code segment, instructions are organised as procedures.
The simplest procedure definition is

name PROC
;body of message
name ENDP

An example

MAIN PROC

;main procedure instructions
MAIN ENDP

;other procedures go here

Microprocessors Lab Session 01
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Putting it together

.MODEL SMALL
STACK 100H
.DATA

;data definition go here
.CODE

MAIN PROC
;instructions go here
MAIN ENDP

;other procedures go here
END MAIN

The last line in the program should be the END directive followed by name of the
main procedure.

A Case Conversion Program

Prompt the user to enter a lowercase letter, and on next line displays another message
with letter in uppercase, as:

Enter a lowercase letter: a

In upper case it is: A

TITLEPGM4_1: CASE CONVERSION PROGRAM
.MODEL SMALL

.STACK 100H
.DATA
CR EQU ODH
LF EQU 0AH
MSG1 DB 'ENTER A LOWER CASE LETTER: $'
MSG2 DB CR, LF,'INUPPER CASEITIS: '
CHAR DB ?,'$
.CODE
MAIN PROC
;initialize DS
MOV AX,@DATA ; get data segment
MOV DS,AX ; initialize DS

;print user prompt
LEA DX,MSG1 ; get first message

MOV AH,9 ; display string function

INT 21H ; display first message
;input a character and convert to upper case

MOV AH,1 ; read character function

INT 21H ; read a small letter into AL

SUB AL,20H ; convert it to upper case

7

Microprocessors Lab Session 01

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

MOV CHAR,AL :and store it

;display on the next line

LEA DX,MSG2 ; get second message

MOV AH,9 ; display string function

INT 21H ; display message and upper case letter in front
;DOS exit

MOV AH,ACH ; DOS exit

INT 21H
MAIN ENDP

END MAIN

Save your program with (.asm) extension.
If “first” is the name of program then save it as “first.asm”

EXERCISE:

Explain, the term Assembly Language Statement:

In what manner, the data will be stored in data segment in response of following
statements: Let starting offset is 0000h within data segment.

STRI DB ‘A’,’B’,’C’:
STR2 DB “LAB SESSION#1 $”:
DT1 DW 40, 50, 60, 70, 80 :
DT2 DB 10110100b, 450, 45 :

THR DB 30h :
TAB EQU 09 :

NUMB1 EQU 8435h:

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 02

OBJECT
Running and Debugging the Assembly Program

THEORY

ASSEMBLING THE PROGRAM
Assembling is the process of converting the assembly language source program into machine language

object file. The program “ASSEMBLER” does this.

. Assembler Fil_15t":'hj
First.as |———] (Masm) o (Object file)
= =
— .
First.Ist
P
r———i] .
First.map
(Cross

Assemble the program

C:\>masm first.asm

Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
Object filename [first.OBJ]: first

Source listing [NUL.LST]: first

Cross-reference [NUL.CRF]: first

47338 + 430081 Bytes symbol space free

0 Warning Errors

0 Severe Errors

After assembling the program as shown above you will find two additional files with the object file,
automatically generated by the assembler, in your directory i.e. the list file and the cross-reference file.
Name must be provided for .LST else NUL (nhothing) will be generated.

1. OBJECT FILE
A non-executable file contains the machine code translation of assembly code, plus other information
needed to produce the executable.

2. LIST FILE

The list file is a text file that gives you assembly language code and the corresponding machine language
code, a list of names used in the program, error messages and other statistics as shown below for the
assembly file first.asm:

‘ PGM4_1: CASE CONVERSION PROGRAM Page 1-1

Microprocessors

Lab Session 04

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

1 TITLE PGM4_1: CASE CONVERSION PROGRAM

2 .MODEL SMALL

3 STACK 100H

4 .DATA

5 =000D CR EQU

ODH
6 = 000A LF EQU
0AH
7 0000 454E54455220 MSG1 DB 'ENTER A LOWER
CASE LETTER: $'

8 41 20 4C 4F 57 45

9 522043415345

10 204C 4554 54 45

11 52 3A 202024

12 001D 0D OA 49 4E 2055 MSG2 DB ODH, 0AH, 'IN U

PPER CASEITIS:

13 50 50 45 52 20 43

14 4153452049 54

15 2049 53 3A 20 20

16 0035 00 24 CHAR DB ?.,%

17 .CODE

18 0000 MAIN PROC

19 ; initialize DS

200000 B8----R MOV AX,@DATA ; get data segment

210003 8E D8 MOV DS, AX ; initialize DS

22 ;print user prompt

23 0005 8D 16 0000 R LEA DX,MSG1 ; get first message

24 0009 B4 09 MOV ' AH)9 ; display string
function

25000B CD 21 INT 21H ; display first
message

26 ;input a character and

;convert to uppercase

27 000D B4 01 MOV AH,1 ; read character
function

28 000F CD 21 INT 21H ;read a small letter
into AL

290011 2C 20 SUB AL,20H ; convert it to upper case

300013 A20035R MOV CHAR,AL ; and store it

31 ;display on the next line

320016 8D 16 001D R LEA DX,MSG2 ;get second message

33 001A B4 09 MOV AH,9 ; display string
function

34001C CDh 21 INT 21H ; display message and

;upper case letter in front

35 ;DOS exit
PGM4_1: CASE CONVERSION PROGRAM Page 1-2

36 001E B4 4C MOV AH,4CH ; DOS e

10

Microprocessors

Lab Session 04

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Length = 0022

xit
370020 CD 21 INT 21H
380022 MAIN ENDP
39 END MAIN
PGM4_1: CASE CONVERSION PROGRAM Symbols-1
Segments and Groups:
Name Length Align Combine Class
DGROUP............. GROUP
_DATA 0037 WORD PUBLIC 'DATA'
STACK 0100 PARA STACK 'STACK'
TEXT ..o 0022 WORD PUBLIC 'CODE'
Symbols:

Name Type Value Attr
CHAR.................. L BYTE 0035 _DATA
CR....o NUMBER 000D
LF.. NUMBER 000A
MAIN.................. N PROC 0000 ~TEXT
MSGLl.................. L BYTE 0000 _DATA
MSG2.................. LBYTE 001D _DATA
@CODE TEXT _TEXT
@CODESIZE TEXT 0
@CPU.................. TEXT 0101h
@DATASIZE TEXT 0
@FILENAME TEXT cc
@VERSION TEXT 510

32 Source Lines
32 Total Lines
23 Symbols

46146 + 447082 Bytes symbol space free

0 Warning Errors
0 Severe Errors

3. CROSS-REFERENCE FILE
List names used in the program and the line number.

LINKING THE PROGRAM

Linking is the process of converting the one or more object files into a single executable file. The program

“LINKER” does this.

11

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

> Linker >

First.obj First.exe

7

C:\>link first.obj;
Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

RUNNING THE PRORAM
On the command line type the name of the program to run.

C:\>first.exe
ENTER A LOWER CASE LETTER: a
IN UPPER CASE IT IS: A

DEBUGGING

DEBUG is a primitive but utilitarian program, supplied with MS-DOS, with a small easy to learn command
set. After assembling and linking the program in previous practical, (first.asm) we take the first.exe into
DEBUG.

On the MS-DOS prompt type the following command,

C:\>DEBUG first.exe

DEBUG comes back with its “-“command prompt.

Useful Commands

Commands Description

E to display registers

EIP to display/change IP register

T to execute single instruction

T4 to execute 4 mnstructions

G execute tll completion

G4 execute till address 0004

D dump bytes in hex format

D 100 dump 128bytes starting from DS:100

D 100 104 dump from 100 to 104

EDS:0ABC enter Ah. Bh, Ch in bytes DS:0, D5:1, DS:2

E 25 Enter bytes interactively starting at DS: 25. Space
bar moves to next byte

Q quit from debug

To view registers and FLAGS, type “R*

C:\>debug first.exe

-R

AX=0000 BX=0000 CX=0030 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=1189 ES=1189 SS=119C CS=1199 IP=0000

12

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

NV UP EI PL NZ NA PO NC
1199:0000 B89A11 MOV AX,119A

As we know 8086 has 14 registers, all of these registers are shown by DEBUG with different values stored
in these registers.

FLAG REGISTER

The letters pairs on the fourth line are the current setting of some of the status and control FLAGS. The
FLAGS displayed and the symbols DEBUG uses are the following:

O/D|T1|T|S}|Z A P C

|:| Unused Flag Register Bits

CLEAR (0) SET (1)

SYMBOL FLAGS

] Overflow Flag NV ov
D Dirsction Flag UE DN
I Inte t Flag DI ET
3 Sign Fle; PL NG
Z Zero Flag NZ ZR
z 2uxiliary Flag NZ O
= Parity Flag j=le} FPE
- Carry Flag NC CY

To change the contents of a register-for example, AX to 1245h

-RDX
DX 0000
11245

Note:- DEBUG assumes that all numbers are expressed in hex. Now let us verify the

change, through “R“ command.
—RDA

D BO8H
1245
i

AX=AAAA BX=-AA0A CH-=-A5%9 DHE=1245 SP=-AiB@ PBEP-ABAAA S1-0BA6BA DI-BE6Q
D3=1453 ES=145%3 355=1467 C5=1463 I1P=-0008 HU UP EI PL HEZ HA PO HC
:BBB@ BBG6S14 MOU AR .1465

DX now contain 1245h.

The next instruction to be executed by the CPU is written on the last line with its address in the memory.
Let us execute each instruction one by one using ,,T* trace command. But before that, just check whether
the “.exe™ file is representing the same assembly language program or not, using the U (unassembled)
command.

13

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

:AaEA BE6cS14 AX.1465
:ABA3 BEDE DS . AR
t@AAsS BDd6BZ2H6 DHE . [BBB2 1
:ABA? B46Y% AH . @9
tAAAE CD21 21
1ABAD B4A1 AH . A1
tAAAF CDh21
@il 2C2@ AL.2@
tAA13 AZ23788 [AA371,.AL
Adi6 8Di61FBA DE . [AA1F1]
:A@1An B4AY7 AH .8%
Aaic Ch2i
tBA1lE B44C

—u 268 22

146388268 CD21

14630022 45

The U command by default shows 32 bytes of program coding. The last instruction shown above is not our
last program’s instruction. To see the remaining instructions, specify directly some address ranges ahead.
Now execute instructions one be one using T command.

—t

AR=1465 Bi-0880 Ci-0857 Di-0800 SP-B188 BP-0800 SI-608680 DI-0806

D3=1453 ES=1453 S5S5=1469? CS=1463 IP-8803 MU UP EI PL HZ HA PO HC
1463 8083 BEDE MO DS . AR

AX now have the segment number of the data segment. Again press T for one more time will execute the
instruction MOV DS, AX as shown on the last line above. This will initialize the data segment register with
the data segment address of the program.

—t

AR=1465 Bi=-0000 Ci-A857 DX-ABAA SP-A1A@ BP-A0A8 S5S1-0008 DI-0008
D3=1465 ES=1453 £55=1469 CS5=1463 IP=BHH% HNU UP EI PL HZ HA PO HC

The next command LEA DX, [0002] will load the offset address of MSG1 in DX which is 0002.

DX=8B02 cP-A1AA EP-8APA SI-AAGB DI-P0AA
CS=1463 1P=BB85 HU UP EI PL NZ HA PO NC

1463:0800 B8 6% 14 8E D8 8D 16 B62-68 B4 62 CD 21 B4 81 CD .e..........t...
1463:8818 21 2C 20 A2 37 B8 8D 16-1F @@ B4 A% CD 21 B4 4C ¢, .7........°%.
1463 :80208

1463 8038 CASE LETTER: 5.
1463 : 80468 -IN UPPER CASE I
1463 860568 L
1463:08060 B8 B8 B0 BO BE OH OB OB-A8 BA B0 B0 B0 8O BB B@
1463:0070 OO B0 OB B0 O B0 OB BO-08 B0 OB B0 BB B0 BB B _...............

We can see that the string variables initialized in the Data Segment has been successfully loaded into the
memory locations as above.
Now through MOV AH, 09 and interrupt command -g 000d, MSG1will be displayed as shown below:

BX=-0080 CX=-pA59 DXZ=8802 SP-A1P@ BP-000R S1-PAAA DI -PAOO
ES=1453 §8=1469 CS=1463 [P=-8885 HU UP EI PL HNZ HA PO NC

| LOWER CASE LETTER:
BBAA CH=-AA59 DX-A082 SP=-A180 BP-8080 SI1-0080 DI-B000
55=1465 CS5=145F IP=888D NU UP EI FL HZ NA FO NC

Bi=-A08A CK=-8859 Di-0882 BA BEP-8E8A SI-88688 DI-0008
ES=144F &58=1465 CE5=145F BF HU UP EI PL NZ NA PO NC

14

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Now through interrupt command -g 0011, user will be prompted to enter a lower case letter AS you can
see, ‘a’ is entered as input, so AX will now contain 0161 where 61 is the ASCII code of

[P

a.
—g BA11

L=
Ae=A161 BX=BBAA Cx=-8B85% DR-08A82 SP-0188 EBEP-8A80A SI1-8808 DI-0088
DS=1465 ES=144F SS=1465 CS=145F IP=0811 MU UP EI PL HZ NA PO NC

Now the SUB command will subtract 20 out of the contents of AL to perform case
conversion.

AA=0141 BX=0800 CX=885%? Di=-8B082 SP=A160 BP-0BB SI1-=-0808 DI-B000
DE=1465 ES=145%3 585=146% C5=1463 IP=A813 HU UF EI PL NZ HA PE NC

Again pressing ‘t” will store the case conversion output i.e. ‘A’ in memory.

Now to display MSG2, its offset address will be loaded in DX:
—t

AX=A141 BH=00A8 CY{=A859 DX=-08B62 SP=-H18@ BP=-00B8 SI1=-A008 DI-0008
DE=1465 ES=1453 S5=1469 CE5=1463 I[P=AA16 HU UF EI PL HZ HA PE NC

MOV AH, 09 and interrupt command are used to print the string on screen as done before. The result will
be displayed as follows:

—t

AX=8141 Bi-8080 CX-86857? Di-0801F SP-B168 BP-DBBB SI-B088 DI-00680
DE=1465 ES=14%3 S58=1469 CS5=1463 IP=-681A MU UF EI PL MZ NA PE NC
1463:0801n B487 MOU AH.B%9

-t

AX=A741 BA=-0AAA CX=0859 Di=-AA1F SP=-H18@ BP-BAA0 SI1-0808 DI-2008
D5=1465 ES=145%3 355=1469 C5=1463 IP=8601C HU UF EI PL HZ HA PE NG
1463:881C CD21 INT 21

—q

IN UPPER CASE IT IS: A
FProgram terminated normally

This message indicates that the program-has run to completion. The program must be reloaded to execute
again. Now leave the DEBUG using “Q"",

EXEERCISE:

Write a program that asks user to enter two numbers to be added and then display the
result with appropriate message on the monitor screen.

15

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

16

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 03

OBJECT
Calling a subroutine from another assembly file as a near procedure
THEORY

Near call—A call to a procedure within the current code segment (the segment currently pointed to by the
CS register), sometimes referred to as an intrasegment call.

Procedure Declaration
e The syntax of procedure declaration is the following:

PROC name NEAR
; body of procedure
ret

ENDP name

The CALL Instruction
e CALL invokes a procedure

call name
where name is the name of a procedure.

Executing a CALL
e The return address to the calling program (the current value of the IP) is saved on the stack

e |P get the offset address-of the firstinstruction of the procedure (this transfers control to the
procedure)

The RET instruction
e Toreturn from a procedure, the instruction

ret pop_value
is executed.

e The integer argument pop_value is optional.

e ret causes the stack to be popped into IP.

A Case Conversion Program

Prompt the user to enter a lowercase letter, and on next line displays another message with letter in
uppercase, as:

Enter a lowercase letter: a

In upper case it is: A

We will create two different assembly files to implement case conversion. First file contains the code that
will prompt user to enter a lower case letter. This file contains a call to a near procedure named
CONVERT, which is used to perform case conversion. The second file contains the code of the procedure
CONVERT. So, when the procedure CONVERT is invoked, the given lower case letter will be converted
to upper case. The control will then be returned back to the calling procedure in the first file which will
display the output.

Assembly code for both of the files is given below:

TITLE PGM4_2: CASE CONVERSION
EXTRN CONVERT: NEAR
.MODEL SMALL

17

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

.STACK 100H

.DATA

MSG DB 'ENTER A LOWER CASE LETTER: S'

.CODE

MAIN PROC
MOV AX,@DATA ; get data segment
MOV DS,AX ; initialize DS

;print user prompt
LEA DX,MSG ; get first message
MOV AH,9 ; display string function
INT 21H ; display first message

;input a character and convert to upper case
MOV AH,1 ; read character function
INT 21H ; read a small letter into AL
CALL CONVERT ; convert to uppercase
MOV AH,4CH
INT 21H ;DOS exit

MAIN ENDP
END MAIN

Save your program with (.asm) extension. If “first” is the name of program then save it
as “first.asm”.

TITLE PGM4_2A : CASE CONVERSION
PUBLIC CONVERT

.MODEL SMALL

.DATA

MSG DB ODH, OAH, 'IN'UPPER CASE ITIS:
CHAR DB -20H,'S'

.CODE
CONVERT PROC NEAR
;converts char in AL to uppercase
PUSH BX
PUSH DX
ADD CHAR,AL
MOV AH,9
LEA DX,MSG
INT 21H
POP DX
POP BX
RET
CONVERT ENDP
END

Save the above program as well with (.asm) extension. If “second” is the name of

program then save it as “second.asm”.
Now follow the steps as mentioned in the previous lab session to assemble the two files. First perform all
the steps to assemble and create .obj file for the first program, list file and cross reference file will also be

18

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

generated automatically by the assembler for the first program. Now, do the same for the second program.
Observe the list files for both the programs yourself.

Now we have to link the two files. For this, write the following line on the command prompt:

>link first + second

Then give any name to the resultant file (e.g.: first). Now we have a single .exe file to perform case
conversion. Write following line on the command prompt:

>debug first.exe

Check whether the .exe file is representing the same assembly language program or not, using the U
(unassembled) command.

BEAYOR
8ED2
80160000
B4@9
cD21
B4mA1
cD21

EfB400
B44C

515151315515}

B4@9
The U command by default shows 32 bytes-of program coding: To see the remaining instructions, specify
directly some address ranges ahead.
To see initial condition of registers, type R command.

G0]16[0 1 HAH
HEB y

=
= =
=
= =
=

=

=

"
[
HEBA HAE BEATAB i f ABAY

Now execute instructions one be-one using T command.

8D 16 28 8@ CD 21 5A HB-C3 B8 457 4E 54 45 52 28 --C..%Z[..ENTER
41 2@ 4C 4F 57 45 52 28-43 41 53 45 28 4C 45 54 A LOWER CASE LET
54 45 52 38 28 26 24 80-8D B8a 4% 4E 28 55 58 58 TER: %...IN UPP
45 52 26 43 41 53 45 28-49 54 28 49 53 34 28 28 E$R CASE IT IS:
E8 24 -

You can see in the above figure that the data segment is initialized with the messages. Now execute the
assembly and interrupt commands and note down the observations stepwise.

EXERCISE 1

Write a program that takes two numbers as input and performs addition or subtraction
(asks user to select any one operation). The code for addition/subtraction of the numbers
should be present in another assembly file that should be called as a near procedure in the
first file.

19

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

20

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 04

OBJECT

Introduction to the trainer.

THEORY

The MC 8088/EV microcomputer trainer is a microprocessor controlled educational
system, based on 8088, conceived to face any problem concerning the study and use of
microprocessor systems.

The 8088 is one of the most common microprocessors and so it can be of help for
studying the structure and general function of PCs. Consequently a fundamental step in
the evolution of PCs is the introduction, by IBM of this kind of microprocessor into the
PC “IBM PC” in 1981.

The basic MC8088/EV contains all the necessary components for the study of this kind of
systems (8088 microprocessor, RAM and EPROM memory, liquid crystal display and
keyboard, serial and parallel interface, analog inputs and outputs, troubleshooting
section).

Technical characteristics of the trainer are:

8088/4.77 MHz microprocessor;

16 Kbytes system EPROM;

16*2 Kbyte user EPROM,;

2 Kbyte RAM memory expandable to 6 Kbyte;
Keyboard (USA type PC keyboard);

Liquid crystal display (max 40 characters : 2 lines with 20 characters each);
Buzzer;

Cassette recorder interface;

CENTRONICS parallel interface;

8 bit IN/OUT parallel ports;

serial interface (standard RS-232);

BUS expansion interface;

Analog output with 8-bit D/A converter;
Analog input with 8-bit A/D converter;

Device for troubleshooting (Num.max.=8);
8+2 logic probes for fault insertion;

Power supplies: 5V/3A, +/-12V/0.3A;
EPROM monitor with:

o Register display and edit

o Memory display and edit

o Continuous, step-by-step, break-points program run

21

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

° Load and save on cassette recorder.
General operation:

All the system’s operations are controlled by microprocessor 8088 (IC1). The clock is
generated by an oscillator composed by inverters TTL-7404 (IC15) and by the system
quartz (14.318 MHz). With the two J-K flip flops included in IC 74107 the original
frequency is divided to obtain the microprocessor clock.

The general RESET line, used by UART also, is short circuited to ground by a condenser
switching on the system (logic level “0’) while this line returns to logic level “1” after
few m-seconds.

The data, addresses and control lines bus are buffered with ICs type 74244, 74245 and
74373 (IC3, IC2, IC4, IC8, IC16).

The selection among the devices concerned with the processor (EPROM memory, RAM,
I/O ports...) is made by ICs type IC17, IC19, IC21, IC22, IC23 and 1C24.

These components type 74139 and 74138 are line decoders, 21N — 40UT and 3IN —
80OUT respectively. The logic combination of the two or three input lines selects one of
the four or eight possible -outputs and the selected device because these lines are
connected to the devices enable ones.

22

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

EXERCISES

Identify the modules M1 to M12 by writing their names on the figure below. Describe
each module in the space provided for this purpose.

M9
M12
M8
M7
<+— M1l —>» 4— MIO —»
M5
M4
M6
M3
M2
VIL
M1

23

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Module M1:

Module M2:

Module M3:

Module M4:

Module M5:

24

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Module M6:

Module M7:

Module M8:

Module M9:

Module M10:

25

Microprocessors Lab Session 04
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Module M11:

Module M12:

26

Microprocessors Lab Session 05
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 05

OBJECT

Using the trainer.
THEORY

The monitor commands are given below:
Command Name Purpose Syntax

A Assembler To let the user to type | A
8088 assembly language | A <addr>
programs into memory
and assemble them into
machine code line by

line.
|
L Disassembler To translate ; L
(disassemble) a block of | L <addr1>
memory into 8088 ; L <addrl>/<n>
assembly instructions. | L <addr1> <addr2>
|
G Go To execute a program in | G
memory. ; G <addr>
|
S Step To single-step a | S
program or execute a u Sn
specified number of
instructions and then
stop with a display of
register contents on the
screen; execution starts
from the address pointed
to by the CS regirter and
the IP register.
|
B Breakpoint To set up to three ; B
breakpoints or display | B <n>
|

their current settings. B <n> <addr>
When a program is on

execution and runs into

a breakpoint address, the

program execution will

be halted.

27

Microprocessors

Lab Session 05

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

C

Cancel
Breakpoint

Register

Memory

Insert

Delete

Find

Jump

Transfer

Pause

Input

Output

To cancel one or all of
the breakpoints set
previously.

To display or change the
contents of any of the
registers.

To display or change the
contents of a memory
location or a range of
memory location.

To insert data into a
memory location or a
portion of memory
locations.

To delete a byte of data
or a segment of data in
memory.

To search for a specified
value or set of values in
memary.

To directly jump to the
particular-address from
which program
execution must start.

To copy a range of
memory contents to
another area in memory.

To adjust the speed of
displaying on the screen.

To input and display in
hexadecimal one byte of
data from the specified
port.

To send one or more

28

| C
| C<n>

| X
| X <register name>

|

| M

| M <addr1>
| M <addrl> <addr2>

| M <addr1> <addr2>/
<datal>/

I
| /<datal> [data2] .../
| <addrl>

D
D/<n>
D <addr1l>/ <n>

F / <datastring>

F <addrl> / <datastring>

F <addrl> <addr2>/
<datastring>

(1) J <addr>.

| T <addrl> <addr2> <addr3>
T <addr4> <addr5>/ <n>

(1) P <n>

(1) N <port_address>

(1) O <port_address> / <data>

Microprocessors Lab Session 05
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

bytes of data to a
specified output port.
W Write To record the contents (1) W <addrl> <addr2>/
of arange of memory on <file_name>
tape.
|
R Read To read the contents ; R / <file_name>
from tape and copy in | R <addr>/ <file_name>
the memory. | R
| R <addr>

EXERCISE

1. Write down the machine code for the program after passing through Assembler and
also write the output of Disassembler.

2. By using single stepping observe the contents of internal registers of microprocessor
during program execution.

3. Set breakpoints at the addresses 000C, 0012 and 0018 then run the program to the end

by Canceling the breakpoints.

Display the registers at each breakpoint in the previous step.

Transfer the program to location 0040 onwards.

Now jump to 0040 address and execute the program.

Note the contents of memory where the program is stored. Also change the contents

of memory location 0015 to AA. Delete the data present at memory location 0008.

No ok

MOV AX, 1111
MOV BX , 0200

MOV CX, 3333

MOV DX , 4444

MOV WORD [0200] , 6A9E
MOV DX , [0200]

MOV CX, DX

MOV AL , [0200]

MOV [0100] , AL

INT 7

29

Microprocessors

Lab Session 05

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS

Observe the contents of registers by using single stepping and record them. (Task 2)

Register

After 1%
instruction

After 2"
instruction

After 3™
instruction

After 4™
instruction

After 5
instruction

AX

BX

CX

DX

DS:[0200]

DS:[0100]

Register

After 67
instruction

After 7
instruction

After 8"
instruction

After 9
instruction

AX

BX

CX

DX

DS:[0200]

DS:]0100]

30

Microprocessors

Lab Session 06

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 06

OBJECT

Learning Data transfer and Stack operation instructions.

THEORY

Opcode of following MOV instructions:

MOV regl, reg2
MOV mem, reg

MOV reg , mem

Opcode of following MOV instruction:

100010dw oorrrmmm - disp

; copy the contents of 8-bit register “reg2” in the 8-bit register

C‘regl’ﬂ.

; copy the contents of 8-bit register “reg” in memory location

13 2

mem .

; copy the contents of memory location “mem” into the register

ECregﬁ,'

MOV mem , imm

Opcode of following MOV instruction:

100010dw -oorrrmmm disp data

; copy the immediate data “imm” into memory location “mem”.

MOV reg, imm

Opcode of following MOV .instructions:

1011wrrr data

; copy the immediate data “imm” into the register “reg”.

MOV mem , acc

MOV acc, mem

101000dw disp

; copy the contents of accumulator into memory location

13 2

mem .

; copy the contents of memory location “mem” into

accumulator.

Instruction opcode Description

PUSH reg 01010rrr pushes the contents of register “reg”
onto the stack.

PUSH mem 11111111 ool10mmm disp | pushes the contents of memory location
“mem” onto the stack.

PUSH seg 00sss110 pushes the contents of segment register
“seg” onto the stack.

PUSH imm 011010s0 data pushes the immediate data “imm” onto
the stack.

PUSHA/PUSHAD | 01100000 pushes all the registers onto the stack

PUSHF/PUSHFD | 10011100 pushes the flags onto the stack.

POP reg 01011rrr pops the contents of register “reg” from

top of the stack.

31

Microprocessors

Lab Session 06

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

POP mem 10001111 00000mmm disp | pops the contents of memory location
“mem” from top of the stack.

POP seg 00sss111 pops the contents of segment register
“seg” from top of the stack

POPA/POPAD 01100001 pops all the registers from the stack.

POPF/POPFD 10010000 pops the flags from the stack.

PUSHA and POPA instructions are not available in 8008 microprocessor.

ASSEMBLY PROGRAM
1. MOV AX,B386
2. MOV BX, 0200
3. MOV CX,0A5C
4 MOV DX, D659
5. MOV BP, 0300
6. MOV ES,CX
7. MOV WORDI[0200], 95D8
8. ADD AX,BX
9. PUSH AX
10. PUSH [BX]

11. PUSH DS
12. PUSHF
13. PUSH DX
14. POP CX
15. POP DI
16. POP ES
17. POP [BP]
18. POPF
19. INT 7

OBSERVATIONS

By using single stepping observe the working of the program.

AX|BX|CX | DX |Flag | BP |SP

ES | DS | DI | [0200] | [0300]

32

Microprocessors Lab Session 06
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Note the contents of the SS: SP register after 13" instruction and then examine the
contents of the corresponding memory locations pointed out to by SS:SP.

EXERCISE 1

Write a program, which

1. Loads AX, BX, CX and DX registers with A154, 7812, 9067, BFD3.

2. Exchange lower byte of CX and higher byte of DX registers by using memory
location 0150 in between the transfer. Then stores CX and DX registers onto memory
location 0170 onward.

3. Exchange higher byte of AX and higher byte of BX registers by using memory
location 0160 in between the transfer. Then stores AX and BX registers onto memory
location 0174 onward.

4. Also draw the flow chart of the program.

Program Flowchart

33

Microprocessors Lab Session 06
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS 1

e Observe the contents of memory location from 0170 to 0177 and record them below
in a table.

e Observe the contents of registers by using single stepping and record the final
contents below.

Contents of memory location Contents of Registers
AX
BX
CX
DX
EXERCISE 2

Write a program that produces certain delay and then increment the Accumulator register.
When accumulator produces a carry then the buzzer should generate tone for a certain
time. Implement this program using subroutine. The length of delay is passed to the delay
subroutine as a parameter, using stack. Also draw the flowchart. You can also use any
assembler for this exercise.

Program Flowchart

34

Microprocessors

Lab Session 07

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 07

OBJECT
Learning Logic group of instructions (AND, OR and XOR).
THEORY
Opcode Inst. | Operandl, Operand2 | Description
001000dw oorrrmmm disp AND Perform logical operation
on register/memory with
000010dw oorrrmmm disp OR reg/ mem, reg/ mem | the memory or the second
register. Both the two
001100dw oorrrmmm disp XOR operands cannot be the
memory location.
100000sw 00100mmm disp data | AND Perform logical operation
on the “immediate value”
100000sw 00001lmmm disp data | OR reg/mem/acc, imm with the contents of the
register / memory location
100000sw 00100mmm disp data | XOR or specifically the

accumulator.

ASSEMBLER PROGRAM

MOV AX, 8A53
MOV BX, 0200
MOV CX, 692D
MOV DX, E6CB

AND AX, BX
AND CX, [BX]
OR [BX], CX

© ®©® N o g~ w DN

XOR AX, 94D7
. XOR DX, C4D1
. INT7

[
N P O

OR WORD [BX], 6F0C

MOV WORD [BX], 7B8A

35

Microprocessors

Lab Session 07

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS

By using single stepping record the contents of following registers:

Register

After 5"
instruction

After 6"
instruction

After 7"
instruction

After 8"
instruction

After 9"
instruction

After 10"
instruction

After 11"
instruction

AX

BX

CX

DX

Flag

Word[0200]

EXERCISE 1

Write a program which mask the bits of AX register, by setting left-most 4 bits ,resetting
right most 4 bits and complement bit position number 9 and 10.(Hint: Use AND,OR and
XOR instructions for masking).

Program

EXERCISE 2

Flowchart

An ASCII coded number can be converted to BCD by masking. Write a program ,which
converts ASCII 30H - 39H to BCD 0-9. Use any assembler for this exercise.

Program

36

Flowchart

Microprocessors

Lab Session 08

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LLab Session 08

OBJECT

To study the shift and rotate instructions present in 8088 instruction set.

THEORY
Instruction Op-code
1101000w 1101001w 1101001w oo TTTmmm T
o00TTTmmm disp o0TTTmmm disp disp T
Description Shift/otate one time | Shift/Rotate Shift/Rotate according to the val
according to the immediate memory location Ue
contents of the CL “mem”
register
Rotate left without carry | ROL reg/mem, 1 ROL 'reg/mem,CL | ROL reg/mem,imm 000
Rotate right without carry | ROR reg/mem , 1 ROR reg/mem,CL | ROR reg/mem, imm 001
Rotate left with carry RCL reg/mem, 1 RCL reg/mem,CL | RCL reg/mem,imm 010
Rotate right with carry RCR reg/mem, 1 RCR reg/mem,CL | RCR reg/mem,imm 011
Shift logic left SAL reg/mem, 1 SAL reg/mem, CL SAL reg/mem, imm 100
Shift Arithmetic left SHL reg/mem, 1 SHL reg/mem , CL SHL reg/mem , imm "
Shift logic right SHR reg/mem, 1 SHR reg/mem, CL SHR reg/mem , imm 101
Shift arithmetic right SAR reg/mem, 1 SAR reg/mem , CL SAR reg/mem , imm 111

ASSEMBLER PROGRAM

0000
0003
0006
000C
000F
0015
001A
0020
0022
0026
- 0028
- 002C
002E

© ©® N o g~ w DN

e e
S

MOV AX, 1111

MOV BX , 2222

MOV CX, 3303

MOV SI, 9254

MOV WORD [100] , 6655
MOV BYTE[123] , 77
MOV WORD [126] , 9988
ROL AX,1

ROL BYTE [100], 1
ROL AX,CL

ROL BYTE [100], CL
RCL BX,1

RCL WORD [100] , 1

37

Microprocessors Lab Session 08
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

140032 RCL AX,CL
150034 RCL WORD [100], CL
16. 0038 ROR AX, 1

17 003A ROR AX,CL

1. 003C ROR BYTE [126] , CL
19 0040 RCR BX, 1

2. 0042 RCR BYTE [127],CL
20046 SHL BX, 1

2. 0048 SHL BYTE [126], CL
2. 004C SAR SI, 1

2. 004E SAR SI,CL

%0050 SHR BYTE[123],1
. 0054 SHR BYTE [123],CL
27. 0058 INT 7

OBSERVATIONS

By using single stepping observe the contents of the registers and memory locations that
are used to store data in the program.

AX BX Sl CF Memory Locations
100 101 123 126 127

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

38

Microprocessors Lab Session 08
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

EXERCISE

Write a program, which multiply two 8-bit numbers using add and shift logic. Check the
program by

() loads accumulator with 20H and then multiply it by 10H.

(i) loads BL with 10H and multiply it by 12H.

Use any assembler of your choice for this purpose.

Also draw the flow chart of the program.

Program Flowchart

OBSERVATIONS 1

Value of the Multiplicand = ------------------ :
Value of the Multiplier = ----------=--—---- .
Result of Multiplication = ------------------- :

OBSERVATIONS 2

Value of the Multiplicand = -----------=------ :
Value of the Multiplier = ----------=--—---- .
Result of Multiplication = ------------------- :

39

Microprocessors Lab Session 09
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 09

OBJECT

Studying Transfer of control instructions (Conditional & Un-Conditional jJumps).

THEORY

Jump Instructions transfers the control of program to the location addressed by the
specified location (as listed in description column)

Instruction Opcode Description

JMP label (short) 11101011 disp IP+disp

JMP label (near) 11101001 disp

JMP label (far) 11101010 IPnew CSnew | Label

JMP reg (near) 11111111 00100mmm contents of register “reg”
JMP mem (near) memory location “mem”
JMP mem (far) 11111111 00101lmmm

Jend label (8-bit disp) 0111cccc - disp IP+disp; when condition
Jend label (16-bit disp) | 00001111 1000cccc — disp “cnd” becomes true

Condition Codes Mnemonic Flag Description

0000 JO 0=1 Jump if overflow

0001 JNO 0=0 Jump if no overflow
0010 JB/INAE CcC=1 Jump if below

0011 JAE/JNB C=0 Jump if above or equal
0100 JENZ Z=1 Jump if equal/zero

0101 JNE/JNZ Z=0 Jump if not equal/zero
0110 JBE/INA C=1+Z=1 Jumpif below or equal
0111 JA/JNBE 0=0.Z=0 Jump if above

1000 JS S=1 Jump if sign

1001 JNS S=0 Jump if no sign

1010 JP/JPE P=1 Jump if parity

1011 JNP/JPO P=0 Jump if no parity

1100 JL/INGE S.0 Jump if less than

1101 JGE/IJNL S=0 Jump if greater than or equal
1110 JLE/ING Z=1+S.0 Jump if less than or equal
1111 JG/INLE Z=0+S=0 Jump if greater than

40

Microprocessors Lab Session 09
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

ASSEMBLER PROGRAM 1

INT 8 Console In (Input a character from the keyboard and store it into the AL reg.
INT B Console Out (Output a character contained in AL to the LCD.
JMP 0000 Jump to the first instruction.

OBSERVATIONS 1

By using single stepping observe the working of the program. Record the content of the
AX registers.

Character AX

QB WIN -

ASSEMBLER PROGRAM 2

MOV AX, 0000

MOV BX, 0000

INT 8 ;Input from Keyboard

INT B ;Output the character

MOV BL, AL

INT 8 ;Input from Keyboard

INT B ;Output the character

CMP AX, BX ;Compare the values in AX and BX
JNZ 0000 ;if not equal jump to start of program.
INT 7

41

Microprocessors Lab Session 09
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS 2

By using single stepping observe the contents of registers AX, BX after execution of each
instruction.
(Different Key input) (Same Key Input)
AX BX AX BX
After 1% instruction

After 2" instruction

After 3" instruction

After 4" instruction

After 5" instruction

After 6" instruction

After 7" instruction

After 8" instruction

After 9" instruction

Flag register after

8" instruction

EXERCISE

Write a program, which prints your name on the LCD display when ‘space’ key is
pressed from the keyboard. Implement using conditional jump instruction. Also draw the
flow chart of the program.

Program Flowchart

42

Microprocessors Lab Session 10
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 10

OBJECT
Learning Isolated 1/O instructions.
THEORY
IN acc, pt opcode = 1110010w port# ; Takes an 8-bit binary

number as input from input port “port#” and stores that in Accumulator.

IN acc, DX opcode = 1110110w ; Takes an 8-bit binary number as input from
input port addressed by DX and stores that in Accumulator.

OUT pt, acc opcode = 1110010w port# ; Outputs an 8-bit number from
Accumulator to output port number “port#”.

OUT DX, acc opcode =:1110111w ; Outputs an 8-bit number from Accumulator
to output port addressed by DX.

ASSEMBLER PROGRAM

INPUT PORT

MOV AX,0
MOV DX, 1A3
IN AL, DX
INT 7

OUTPUT PORT

AL Ch 1

MOV AL , 41 S. No. aracter
MOV DX . 1A1 1
OUT DX, AL ;
INT 7

3

4

5

43

Microprocessors Lab Session 10
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

EXERCISE

Write a program, which output the first ten numbers of Fibonacci series. You can also use
any assembler for this exercise. (Hint: Use looping technique, to output numbers one by
one in each iteration of loop)

Program Flowchart

44

Microprocessors Lab Session 11
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 11

OBJECT

Learning Arithmetic group of instructions (Add, Subtract, Multiply and Divide).

THEORY
Opcode Inst. Operandl, | Description
Operand?

000000/000101dw ADD/SUB | regl, reg2 | add / subtract (with carry/borrow)
oorrrmmm disp OR the contents of the register “reg” or
000100/000110dw ADC/SBB | €M €0 | «“mem” with / from the register
oorrrmmm disp reg, mem “reg” or “mem”

100000sw 00000/101mmm ADD/SUB | reg, imm add / subtract (with carry/borrow)
disp data OR the immediate data “imm” with /
100000sw 00010/011mmm | ADC/SBB gem’ MM 1 from register / memory location or
disp data acc, imm specifically the accumulator.

Opcode of following MUL instructions: 1111011w ©00100mmm disp

MUL reg ; multiply the contents of register “reg” with the accumulator
register and return the result in “AH and AL” or “DX and AX”.
MUL mem ; multiply the contents of memory “mem” with the accumulator

register and return the result in “AH and AL” or “DX and AX”.

Opcode of following DIV instructions: - 1111011w 00110mmm disp

DIV reg ; divide the contents of the accumulator register by the contents of
register “reg” and return the remainder in AH and the quotient in
AL or the remainder in DX and the quotient in AX.

DIV mem ; divide the contents of the accumulator register by the contents of
memory location “mem” and return the remainder in AH and the
quotient in AL or the remainder in DX and the quotient in AX.

45

Microprocessors Lab Session 11
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

ASSEMBLER PROGRAM 1 (Add & Subtract)

ADDITION:

MOV AX, 4000
MOV BX, 0006
MOV CX, 8
ADC AX,BX
LOOP 0009
INT 7

SUBTRACTION
MOV AX, 4000
MOV BX, 0006
MOV CX, 8
SBB AX, BX
LOOP 0009
INT 7

OBSERVATIONS 1
e Using single stepping record the contents of AX register until CX becomes zero
Addition:

CX AX CX AX CX AX

Subtraction:

CX AX CX AX CX AX

46

Microprocessors

Lab Session 11

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

ASSEMBLER PROGRAM 2 (MULTIPLY AND DIVIDE)

MULTIPLICATION
(8-bit)

MOV AX , FF

MOV CL, 6

MUL CL

INT 7

DIVISION
(8-bit)

MOV AX , 0400

MOV CL, 6

DIV CL

INT 7

OBSERVATIONS 2

(16-bit)
MOV AX , FFFF
MOV CX , 0200
MUL CX

INT 7

(16-bit)
MOV DX, 23
MOV AX , 4
MOV 'CX , 300
DIV CX

INT 7

Record values of AX, BX, CX & DX before & after execution of MUL/DIV instruction.

For Multiplication

8-bit:

Before Execution of MUL:

AX
CX

After Execution of MUL:

AX
CX

16-bit:

Before Execution of MUL:

AX
CX

After Execution of MUL:
AX
CX

BX
DX

BX

DX

BX

DX

BX
DX

47

Microprocessors

Lab Session 11

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

For Division

8-bit:

Before Execution of DIV:

AX
CX

After Execution of DIV:

AX
CX

16-bit:

Before Execution of DIV:

AX
CX

After Execution of DIV:

AX
CX

EXERCISES

BX
DX

BX

DX

BX

DX

BX
DX

1) Write a program, which will add the contents of two 32 bit numbers stored in DX
— AX (DX contains the high order word) and memory location WORD [0202] —

WORD [0200].

Program

48

Microprocessors Lab Session 11
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

2) Write a program which input ten 8-bit numbers as input from user and output their
sum on LCD display.

Program Hex code

3) Write a program, which calculate the factorial of any given number (the number
may be used as an immediate operand in the instruction). Use any assembler for
this exercise.

Program Flowchart

49

Microprocessors Lab Session 12
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 12

OBJECT

Studying Transfer of control instructions (Call and Return).

THEORY
Opcode of following CALL instruction: 11101000 disp

CALL Ilabel ; transfer the control of program to the location “IP+disp”
(near)

Opcode of following CALL instruction: 11101000 IPnew CSnew

CALL label ; transfer the control of program to the location “label”
(far)

Opcode of following CALL instructions: 11111111 00010mmm

CALL reg ; transfer the control of program to the location “reg”

(near)

CALL mem ; transfer the control of program to the location of memory “mem”
(near)

Opcode of following CALL instruction: 11111111 00011mmm

CALL mem ; transfer the control of program to the location of memory “mem”
(far)

Opcode of following RET instruction: 11000011

RET ; Return the control of program to the main routine (to the
(near) instruction next to the associated CALL instruction)

Opcode of following RET instruction: 11000010 data

RET imm ; Return the control of program to the main routine and changes SP
(near) to address “SP+imm”

Opcode of following RET instruction: 11001011

RET ; Return the control of program to the main routine (to the
(far) instruction next to the associated CALL instruction)

Opcode of following RET instruction: 11001010 data

50

Microprocessors Lab Session 12
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

RET imm ; Return the control of program to the main routine and changes SP
(far) to address “SP+imm”

ASSEMBLER PROGRAM

MOV AX, 5AD8
MOV CX, 0006
MOV WORDI[FE], 349A
MOV WORD[100], 9CFF
MOV WORD[102], A9B6
MOV AX, WORD[102]
CALL LABEL
MOV CX, DX
JMP HERE

LABEL: PUSH AX
MOV AX, WORDI[FE]
INC WORD[100]
ADD AX, WORD[100]
ROL AX,CL
XOR WORDI[102] , AX
SBB WORDI[FE], AX

MOV DX, AX
POP AX
RET

HERE: CMP AX,CX

OBSERVATIONS

By using single stepping observe the contents of registers AX, BX, CX, DX and memory
location FE, 100 and 102.

Before Execution

AX X BX
CX X X DX
SP : X WORD[FE]
WORD[100] : X WORD[102]
After CALL instruction
AX : ; BX
CX : X DX
SP : X WORD[FE]

WORD[100] : : WORD[102]

51

Microprocessors Lab Session 12
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

After RET instruction

AX : ; BX
CcX X X DX
SP : X WORD[FE]
WORD[100] X X WORD[102]
After Execution
AX X BX
CX : X DX
SP X X WORD[FE]
WORD[100] : X WORD[102]
EXERCISE

Write a program, which takes input from port address 3060h then calls a subroutine
having label ‘ADDNOS’. ADDNOS subroutine adds the inputted values from the
specified input port. The program takes input from port 10 times. Produce a certain delay
by using a subroutine between two consecutive inputs from port. Program stores the final
result as a word on memory location 0200. Also draw the flow chart of the program.

Program Flowchart

52

Microprocessors Lab Session 13
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 13

OBJECT
Using ADC/DAC

THEORY

Analog Interface

The MCB8088 Analog interface provides one 8-bit ADC (0804) and one 8-bit DAC
(0800).
The port address of DAC and ADC is 10C h.

DIGITAL /ANALOG CONVERTER

The digital/analog converter uses an 1C34 latch (74374) directly connected to the data
bus in order to give the digital information to the conversion device (DAC — 0800). The
current of the digital signal to be transmitted is converted into the corresponding voltage
signal with the operational 1C36 (I —V converter)

ANALOG / DIGITAL CONVERTER

The analog / digital converter uses the ADC0804 for converting and a buffer (74244) for
data bus communication of the system.

DAC PROGRAMMING

This program outputs a value from 00h to FFh on the DAC port. Observe the analog
output of the program using a multi meter.

Program:

START :
MOV DX, 10C ; Move address of DAC in DX
MOV AL,0 ; reset AL

LOOP: INT E ; Display AL in Hex Format
PUSH AX ; save AL on stack
INT 8 ; Wait for a keyboard hit
POP AX
OUT DX, AL ; OUT to DAC at 10C h
INC AL
JNZ LOOP ;if AL is not zero then repeat
INT 7 ; EXIT

53

Microprocessors

Lab Session 13

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

ADC PROGRAMMING

Apply analogue voltage at the analogue input of ADC using variable power supply (0-
10V DC) and take the digital input from the ADC port at 10C h and display it on the

LCD.

Program:

START:

LOOP:

OBSERVATION

MOV
INT
IN

INT
JMP
INT

DAC PROGRAMMING:

DX, 10C ; Move address of ADC in DX

8 ; Wait for a keyboard hit

AL, DX ; IN from ADC at 10C h

E ; display AL on LCD in HEX format
LOOP ; repeat

7

Observe the multimeter reading for the following values of AL register.

Value of AL register

1)
2)
3)
4)

00
15

DE

FC

ADC PROGRAMMING:

Multimeter Reading (Volts)

Observe the value of AL register for following values of multimeter.

Multimeter Reading (Volts)

1)
2)
3)
4)

15
3.8
6.3
9.8

Value of AL register

54

Microprocessors Lab Session 14
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 14

OBJECT

Interfacing Printer with 8088
THEORY

PARALLEL PRINTER INTERFACE

This section of the MC8088 trainer board offers 1 OUTPUT parallel port per printer.

The unit contains all the test points related to the MC8088 signals:

e Address
e Data
e Control signals

It also contains an expansion.connector on which the bus signals are reported.
This powers the system with external hardware.

The 25 pin connector complete pin-out is shown below:

STROBE 1 14 AUTOFD
DO 2 15 ERROR
D1 3 16 INIT

D2 4 17 SLCTIN
D3 5 18 GROUND
D4 6 19 GROUND
D5 7 20 GROUND
D6 8 21 GROUND
D7 9 22 GROUND
AK 10 23 GROUND
BUSY 11 24 GROUND
PE 12 25 GROUND
SLCT 13

The operation involving the parallel output is controlled by 8 data lines (DO — D7) and the
two lines related to handshaking: BUSY and STROBE controls.

The data are sent to the printer with an 1C47 buffer with 1EOH address.

The BUSY line is connected to line 6 of buffer IC7 (line 6 connected to relative bus data
line with weight 2°6=64) and is used as input.

55

Microprocessors Lab Session 14
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

The STROBE line is used toward the printer and goes from the system to the printer
buffer to inform the printer that the byte to be printed is available on the data lines. It is
connected to line 7 of buffer IC3 and to the data bus line with weight 2"7=128.

The timing diagram for the printing operation is:

BUSY

DATA

STROBE

The BUSY line coming from the printer must be at low logic level for a printing
operation; with high logic level the device is in printing state related to a former
character.

In a second time data to be printed must be introduced and buffer 1C47 must be loaded
with byte related to the desired character or control.

At last the line STROBE must be put at low logic level for a moment (STROBE is ON
and low) to memorize bytes to be printed in the printer buffer.

ASSEMBLY PROGRAM
PARALLEL PRINTER PROGRAMMING

PRINTER PORT ADDRESSES

DATA 1EOH
STROBE 180 H bit 7
BUSY 1CO H bit 6

This program prints typed characters

0008 : 0000 INT 8 ;load typed character in AL

56

Microprocessors

Lab Session 14

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

0002
0003
0006
0007
0009
000B
000C
000F
0010
0013
0014
0016
0017
0019
001A

PUSH AX
MOV DX, 1C0
IN AL, DX
TEST AL, 40
JNZ 3

POP AX

MOV DX, 1EO
OUT DX, AL
MOV DX, 180
IN AL, DX
SUB AL, 80
OUT DX, AL
ADD AL, 80
OUT DX, AL
JMP 00

;read BUSY port

;test bit 6 of byte read

;send data to port 1EOh

;generate strobe pulse

57

Microprocessors Lab Session 15(a)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 15(a)

OBJECT

Learning De-multiplexing of Address/Data bus of 8088 Microprocessor.

THEORY

There is 20-bit address bus and 8-bit data bus present on the chip of 8088 microprocessor.
Lower 8 bits of address and data buses are time multiplexed with each other. For any
machine cycle address comes out of the microprocessor and after some time the bus is
used for data transfer between microprocessor and memory or 1/0 device. In this way the
address is not present there for the whole machine cycle on the bus. For holding the
address for the full machine cycle we have to design a circuit.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

8088 microprocessor
74L.S373 latches
7415244 buffers
7415245 buffers

el A

STEPS OF DESIGNING (Connection description)

1. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the
inputs of latch 74LS373. The only address will be available after passing through the
latch.

2. The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.

The only address will be available after passing through the latch.

4. Connect the lower 8 bits of the time multiplexed address/data (ADO-AD7) bus to the

inputs of bi-directional buffer 74L.S245.

The enable pin of the buffer 74LS245 will be connected to the DEN pin of the 8088.

The only data will be pass through the buffer in either direction.

7. The DT/R pin of the microprocessor will control the direction of data flow through
the bi-directional buffer.

8. Connect the higher 8 bits of the address bus (A8-A15) to the inputs of buffer
741.S244.

9. Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

10. Connect the same pins to the inputs of buffer 74L.S244 to get the status signals S3,
S4, S5 and S6 from 8088.

w

oo

58

Microprocessors Lab Session 15(b)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 15(b)

OBJECT

Creating input / output device select pulses
THEORY

The Microprocessor 8088 has 16-bit register to address 1/0 devices. Here we have to
create device select pulses to select input and output devices. We will use DIP switches
as input device and LEDs as output device.

DESIGN OF CIRCUIT
These components will be required for design of the circuit.

5. DIP switches.

6. LEDs.

7. 74LS08 AND gates.

8. 74LS04 hex inverter.

9. 74LS138 line decoder.

STEPS OF DESIGNING (Connection description)

e For input device selection we have to use 10/M and RD signals and address of the
input device to be selected to generate the device select pulse.

e For output device selection we have to use 10/M and WR signals and address of the
output device to be selected to generate the device select pulse.

e AsIO/M, RD, WR are active low for 1/0O operations so we will generate the device
select pulse in given below manner.

I0/M

RD C Input Device Select Pulse
Address
of input device
I0/M

WR
Address

of output device

ONO)

Output Device Select Pulse

e By using these device select pulse we can select / enable the DIP switches or LEDs
according to the need.

OR

e By using 74138 line decoder we can generate the device select pulses for I/0O devices.

59

Microprocessors Lab Session 15(c)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 15(c)

OBJECT

Interfacing 8255PP1 to the 8088 Microprocessor
THEORY

There are three different ports (Port A, Port B and Port C) are available to interface 1/0
devices to 8088 microprocessor. There is an internal register, which stores Command
Word so we can call it Command register. Command Word defines the modes of working
of ports of the device. There are three different types of modes present in 8255 to
interface 1/0 devices to 8088 microprocessor.

Mode 1 : Simple I/O.
Mode 2 : Strobed 1/0O.
Mode 3 : Handshake 1/0O.

There are two pins Ag and A; present on the package of 8255PP1 to select the ports.

A Ag Select
0 0 Port A
0 1 Port B
1 0 Port C
1 1 Command Register

First of all the Command Register is selected and the' Command Word is stored in the
register. After that we can use the ports of 8255PPI according to the function that we
have defined in the Command Word.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

10. 8088 microprocessor.

11. 8255 Programmable Peripheral Interface.
12. DIP switches.

13. LED:s.

14. 74L.S373 latches.

15. 74L.S244 buffers.

16. 74L.S245 buffers.

17. 74L.S04 hex inverter.

18. Small capacity RAM IC (e.g. 4016).
19. Small capacity EPROM IC (e.g. 2716).
20. 74L.S138 line decoder.

60

Microprocessors Lab Session 15(c)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

STEPS OF DESIGNING (Connection description)

wmn

oo

11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.

Connect the lower 8 bits of the time multiplexed address/data (ADO-AD7) bus to the
inputs of latch 74LS373. The only address will be available after passing through the
latch.

The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.
The only address will be available after passing through the latch.

Connect the lower 8 bits of the time multiplexed address/data (ADO-AD7) bus to the
inputs of bi-directional buffer 74L5245.

The enable pin of the buffer 74L.5245 will be connected to the DEN pin of the 8088.
The only data will be pass through the buffer in either direction.

The DT/R pin of the microprocessor will control the direction of data flow through
the bi-directional buffer.

Connect the higher 8 bits of the address bus (A8-Al5) to the inputs of buffer
74L.S244.

Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

. Connect the same pins to the inputs of buffer 74L.S244 to get the status signals S3,

S4, S5 and S6 from 8088.

Define the addresses for selecting 8255PPI, RAM and EPROM ICs.

Connect three address pins to the inputs (A, B and C) of 74138 decoder.

Connect the enable pins of the decoder 74138 to appropriate address lines.

Connect the data bus of microprocessor to the data bus of 8255PPI.

A and A; pins of 8255PPI will be connected to Ao, and A; pins of 8088
microprocessor respectively.

CS (Chip Select) pin of 8255PPI will be connected to one of the outputs of 74138
decoder.

RESET of 8255PPI will be connected to RESET of 8088 microprocessor.

RD and WR pins of 8255PP1 will be connected to the IORC and IOWC pins of 8088
microprocessor respectively.

Connect the address and data buses of EPROM and RAM to the address and data
buses of 8088 microprocessor.

CE or CS pin of EPROM and RAM will be connected to one of the outputs of the
74138 decoder.

OE pin of the EPROM and RAM will be connected to the RD pin of the
microprocessor.

61

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 16(a)

Series-Parallel Logic

OBJECT

To learn how to handle elements when connecting them in series (an AND circuit) or
in parallel (an OR circuit).

THEORY

Input 11 is ORed with input 12 and this Logical combination of element is ANDed with
input 13. Whether or not input I3 passes power flow to output element O1 depends on
whether input 11 or input 12 passes a current flow.

0.00 0.01 10.00
| 1 o0

1 12
002
| |
||

. Figure 1

Suppose we try this new combination of AND and OR functions in Figur 2.

0.00 0.01 10.00

| | || Yy

01

|| | ~

11 2
0.02

| |

||

13

Figure 2

62

Microprocessors Lab Session 16(a)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

PROCEDURE

Program the PLC with this circuit:

1.

!\). []

To execute CX-programmer, do the following steps:
Click the START and go to All Programs.

Select the folder Omron then the folder CX-Programmer.
Click on CX-Programmer to start.

To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.
A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default = NewPLC1).
Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.
Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4
different windows:

Ladder design window

Project work space

Output Window Error on Compiling
Watch window 1/0O Monitor

Ladder Design Window:

1.

Develop the given ladder logic in Figure 1 in this window by following these
steps:

Place a new contact by clicking on it from toolbar and then clicking on ladder
design window at the desired location.

Write 0.00 in Edit contact and press OK then write 11 in Edit comment field and
press OK.

Place another new contact by clicking on it from toolbar and then clicking on
ladder design window at the right of 11.

Write 0.01 in Edit contact and press OK then write 12 in Edit comment field and
press OK.

Place a new coil by clicking on it from toolbar and then clicking on ladder design
window at the right of 12,

63

Microprocessors Lab Session 16(a)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

o

Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and
press OK.

Place a vertical wire connection in between 11 and 12 for connecting 13 in parallel
of I1.

Place another new contact by clicking on it from toolbar and then clicking on
ladder design window at the bottom of I1.

Write 0.02 in Edit contact and press OK then write I3 in Edit comment field and
press OK.

Compile this program by clicking on Program Menu and by selecting Compile
option. Another window appears with number on errors and warning message.
Now change PLC mode to online from PLC menu and selecting Work online OR
by pressing Work On-line button from toolbar. A confirmation dialogue is
displayed, select the Yes pushbutton to connect.

Select the Download button from the toolbar. The Download Options dialogue is
displayed.

Set the Programs field and select the OK pushbutton.

Deselect the Work Online option. Now you can observe the operation of PLC on
the PC monitor.

TEST THE CIRCUIT

Output 10.00 should be energized when:

I-01 and 1-02 are pressed.
or
I-03 and 1-02 are pressed.

TASK

Develop the logic given in Figure 2 and test its operation:
Output:

64

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

EXERCISE
Program the PLC with the circuit below:

0.00 0.m 0.04 10.00
| | | | |
o1

| [|

"] I

0.0z

| |

[

12

0.03

| |

[

I4

0.0>

| |

I

IS

Figure 3

OBSERVATIONS

1. Output O1 when I1 and 14 are pressed — ----=---- : (ON/OFF)
2. Output O1 when 14 and I3 are pressed — --------= \ (ON/OFF)
3. Output O1 when I5 and 16 are pressed ~ --------- : (ON/OFF)
4. Output O1 when I6is pressed ~ --------- : (ON/OFF)

65

Microprocessors Lab Session 16(b)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 16(b)
Latching Circuits

OBJECT

To learn how to program a latching circuit in the PLC.

THEORY

A latching circuit provides a latched (ON) signal from a momentary pulse. When a
momentary pulse is transmitted, the circuit turns on and remains on even though the pulse
is momentary.

.00 0.0 10.00
|| | /|)
o1
| /] O
11 2
10.00
| |
[
o1
Figurel

In Figure 1 a momentary push button, PB1, is wired to input I1. When the button is
pushed and then released, 11 turns ON, then OFF, providing only momentary energizing
for 11. Output O1 receives this momentary pulse, and energizes the contacts (O1) in
parallel with the momentary switch. These contacts maintain the connection after the
push button is released. Contact will be maintained until 12 is energized, breaking the
circuit to relay coil O1. The circuit will also reset to a power off condition if the PLC
loses power or the PLC is turned off.

This experiment will also introduce Nicknames and Reference Description.

Input 11 will be named as START.
Input 12 will be named as STOP.

PROCEDURE

Program the PLC with this circuit:

66

Microprocessors Lab Session 16(b)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

!\)...!—\

To execute CX-programmer, do the following steps:
Click the START and go to All Programs.

Select the folder Omron then the folder CX-Programmer.
Click on CX-Programmer to start.

To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.
A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default — NewPLC1).
Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.
Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4
different windows:

e Ladder design window

e Project work space

e Qutput Window Error on Compiling
e Watch window 1/0O Monitor

Ladder Design Window:

1.

Develop the given ladder logic in Figure 1 in-this window by following these
steps:

Place a new contact by clicking on it from toolbar and then clicking on ladder
design window at the desired location.

Write 0.00 in Edit contact and press OK then write 11 in Edit comment field and
press OK.

Now Place a new closed contact by clicking on it from toolbar and then clicking
on ladder design window at the right of I1.

Write 0.01 in Edit contact and press OK then write 12 in Edit comment field and
press OK.

Place a new coil by clicking on it from toolbar and then clicking on ladder design
window at the right of 12,

Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and
press OK.

Place a vertical wire connection in between 11 and 12 for connecting I3 in parallel
of 11.

Place another new contact by clicking on it from toolbar and then clicking on
ladder design window at the bottom of I1.

67

Microprocessors Lab Session 16(b)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

o

Write 0.02 in Edit contact and press OK then write 13 in Edit comment field and
press OK.

Compile this program by clicking on Program Menu and by selecting Compile
option. Another window appears with number on errors and warning message.
Now change PLC mode to online from PLC menu and selecting Work online OR
by pressing Work On-line button from toolbar. A confirmation dialogue is
displayed; select the Yes pushbutton to connect.

Select the Download button from the toolbar. The Download Options dialogue is
displayed.

Set the Programs field and select the OK pushbutton.

Deselect the Work Online option. Now you can observe the operation of PLC on
the PC monitor.

TEST THE CIRCUIT

When SW1 is pressed, enabling 11, the indicator for O1 will illuminate as well.
O1 will remain on even after SW1 is no longer pressed.

When SW2 is pressed, O1 should turn off.

If the PLC power is turned off, the circuit will RESET when power is turned back
on.

EXERCISE

Program the PLC with the circuit below:

0.00 0.01 10.00
| | / O— o
I 12
10.00 0.02
|| /
o1 13
Figure 2
OBSERVATIONS
1. Output Ol when Ilispressed. ——---mme- (ON/OFF)
2. Output O1 when 13 is pressed and released. ~ --------- (ON/OFF)
3. Output O1 when 12 ispressed. —-mmmmee- (ON/OFF)
4. Output O1 when 12 and 13 both are pressed ~ --------- (ON/OFF)

68

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 16(c)
Timer Circuits

OBJECT
To learn how to program a Timer circuit in the PLC.
THEORY

The internal PLC timer consists of an enabling input, a reset input, and a timer preset
value.

The figure shows the basic timer function in a logic circuit.

0.0o
| | -
|| T 4 Timer
I
Timer
om Murmber
#40 Sot Walue
TIMDO1 10.00
N O— o

Figure 1

This circuit delays power to O1 until a preset time has elapsed. The Set Value sets the
length of the time delay in multiple of 0.1 seconds. In the above figure, the constant value
of 40 will result in a 4 seconds time delay between the time 11 is energized and O1

output.

PROCEDURE
Program the PLC with this circuit:

1. To execute CX-programmer, do the following steps:

69

Microprocessors Lab Session 16(c)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

2.

Click the START and go to All Programs.

Select the folder Omron then the folder CX-Programmer.
Click on CX-Programmer to start.

To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.
A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default — NewPLC1).
Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.
Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4
different windows:

Ladder design window

e Project work space

e Output Window Error on Compiling

e Watch window 1/0O Monitor
Ladder Design Window:

1.

Develop the given ladder logic in Figure 1 in this window by following these
steps:

Place a new contact by clicking on it from toolbar and then clicking on ladder
design window at the desired location.

Write 0.00 in Edit contact and press OK then write 11 in Edit comment field and
press OK.

Now Place a new PLC instruction by clicking on it from toolbar and then clicking
on ladder design window at the right of I1.

Write TIM 001 #40 in Edit Instruction and press OK then write Timerl in Edit
comment field and press OK.

Place another new contact by clicking on it from toolbar and then clicking on
ladder design window just below I1 in the next rung.

Write TIMOO1 in Edit contact and press OK then write Timerl in Edit comment
field and press OK.

Place a new coil by clicking on it from toolbar and then clicking on ladder design
window at the right of Timer1.

Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and
press OK.

70

Microprocessors Lab Session 16(c)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

2.

3.

o

Compile this program by clicking on Program Menu and by selecting Compile
option. Another window appears with number on errors and warning message.
Now change PLC mode to online from PLC menu and selecting Work online OR
by pressing Work On-line button from toolbar. A confirmation dialogue is
displayed; select the Yes pushbutton to connect.

Select the Download button from the toolbar. The Download Options dialogue is
displayed.

Set the Programs field and select the OK pushbutton.

Deselect the Work Online option. Now you can observe the operation of PLC on
the PC monitor.

TEST THE PROGRAM

Four seconds after 11 is closed O1 will be energized.

The timer status will be displayed in real time on the program screen in either
online or monitor modes. Observe the time value shown on the program screen. If
the time is running, a number will increment on the timer. This reflects the timer’s
internal count. After the set value has been reached, the timer stops to increment.
Releasing 11 will reset the timer value to zero.

EXERCISE

Q: Design Ladder logic program for Priority determination design (Early Player Buzzer

First).

OPERATION:
The game buzzer control requirement:

1. After the Host has finished with question.

2. The 3 players will press the switch in front of them to fight to be first to
answer the question.

3. The buzzer will sound for 10 sec after any one of the players has touched the
switch.

4. The light indicator in front of each player will light-up and only reset by the
Host switch.

1/0 ASSIGNMENT:

Input Device Output Device
00000 PB1 01000 Buzzer
00001 PB2 01001 Playerl light
00002 PB3 01002 Player2 light
00003 RST (reset) 01003 Player3 light

71

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

LADDER LOGIC:

72

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS

73

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Lab Session 16(d)
Counter Circuits

OBJECT

To learn how to program a counter circuit in the PLC.

THEORY

The basic counter within the PLC consists of the input the counter function, the counter
reset input, and the counter preset. Each part of the counter performs a very specific
function. Each part of the counter performs a very specific function. The counter must
first be enabled before it can count events. To enable the counter, the reset element must
be open initially. If the reset element is open, then closing the count element causes the
accumulated value of a counter to increase by 1.For example, if the accumulated value of
a counter was 7, the value would increase to 8 with the closing of the count element.

The accumulated value increases by leach time the count element goes from open to
close. If the count element remain in the close position, the accumulated value increases
by only 1.The count element must then be opened and again closed in order to increases
the value by a count of 1.When the accumulated value of a counter is equal to a PRESET
value, the counter energizes the output relay coil.

Any time the RESET element is closed, the counter is RESET regardless of whether or
not the count contact is close. If the counter is RESET, the accumulated value of the
counter is RESET, to 0000 and the counter output is de-energized. This causes the output
relay coil and its associated contacts to change back to their original status-the normally
closed contacts close. These conditions will remain as long as the RESET element is
close. When the RESET element is again opened, the counter is ready to begin counting
all over again.

a.oo
| | | | Counter
'”' CNT
. Counter
l:IJ.l:|1I oo Mumbar
o
12
#5 Sot Walue
CNTDO1 10.01
| O @
Figure 1
PROCEDURE

74

Microprocessors Lab Session 16(d)

NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

Program the PLC with this circuit:

1. To execute CX-programmer, do the following steps:

2.

Click the START and go to All Programs.

Select the folder Omron then the folder CX-Programmer.
Click on CX-Programmer to start.

To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.
A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default — NewPLC1).
Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.
Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4
different windows:

Ladder design window

e Project work space

e Qutput Window Error on Compiling

e Watch window 1/O Monitor
Ladder Design Window:

1.

Develop the given ladder logic in Figure 1 in this window by following these
steps:

Place a new contact by clicking on it from toolbar and then clicking on ladder
design window at the desired location.

Write 0.00 in Edit contact and press OK then write 11 in Edit comment field and
press OK.

Now Place a new PLC instruction by clicking on it from toolbar and then clicking
on ladder design window at the right of 11.

Write CNT 010 #8 in Edit Instruction and press OK then write Counterl in Edit
comment field and press OK.

Place another new contact by clicking on it from toolbar and then clicking on
ladder design window just below I1.

Write 0.01 in Edit contact and press OK then write 12 in Edit comment field and
press OK.

Place third new contact by clicking on it from toolbar and then clicking on ladder
design window just below 12 in the next rung.

75

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

e Write CNTO010 in Edit contact and press OK then write Counterl in Edit comment
field and press OK.

e Place a new coil by clicking on it from toolbar and then clicking on ladder design
window at the right of Counterl.

e Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and
press OK.

2. Compile this program by clicking on Program Menu and by selecting Compile
option. Another window appears with number on errors and warning message.

3. Now change PLC mode to online from PLC menu and selecting Work online OR
by pressing Work On-line button from toolbar. A confirmation dialogue is
displayed; select the Yes pushbutton to connect.

4. Select the Download button from the toolbar. The Download Options dialogue is

displayed.

Set the Programs field and select the OK pushbutton.

6. Deselect the Work Online option. Now you can observe the operation of PLC on
the PC monitor.

o1

TEST THE PROGRAM

e Press I1 eight times. The accumulated count will appear on the counter. At the
tenth switch closure O1 will energize.

e Press 12 to reset the counter and repeat the experiment.

EXERCISE
Q: Design Ladder Logic Program for Packaging Line Control:

OPERATION:

When PB1 (START Push Button) is pressed, the box conveyor moves. Upon detection of box
present, the box conveyor stops and the Apple conveyor starts. Part sensor will count for 10
apples. Apple conveyor stops and box conveyor starts again. Counter will be reset and
operation repeats until PB2 (STOP Push Button) is pressed.

1/0 ASSIGNMENT:

Input Devices Output Devices

00000 START Push Button (PB1 01000 Apple Conveyor
00001 STOP Push Button (PB2) 01001 Box Conveyor
00002 Part Present (SE1)

00003 Box Present (SE2)

LADDER LOGIC:

76

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology — Department of Computer & Information Systems Engineering

OBSERVATIONS

77

ok

78

CIRCUIT DIAGRAM

(Lab session 15)

INY
= edams 5528
[=] £0d
(=] 90d K 1=aNo
[——] SOd
[— —] +0d K9z=00N
| — — 7T €0d
[== ==] gT 20d
== 10d $0S WL
= 0od Y0SIWL
18d
8-dIaMS .|ﬂ|.|n~| 96 =
—pz] S8d UM |gp
7z vad ax
2 =% —Slead 1353 |gp von
= oo 28d
SEL —5r 184 W |
an w —gr{ 08d oY
anZ « avd 40 ryr——
ovd 90 [-go—
a7 f Svd S8 Fer— e
- 70 B o AR A 5
o I 1 2va o e
I73 sa _ 2 N a & noL
n¥ 5 < owa 0a lﬂlﬂu/ in = dS-LOVL MS
0
a¥ o i e
¢ 928 3apig 3oL ms
73 za 3a(8Q 0
s3y
L 2ZAQY [-g— -
LAQY fp— =
2 20N
ONASD |—
3808 ONASY
= [p=aNS))
|——| ZX 4
g8 7) iy By L
o EN o] 13s3y
—_s|iM | AQYR 183 prorsay
—3¢0ss 1831 oy
1Sy —pd0d ZNaY | S
gz ol 119/0Y N1 INBY fp—
7z ¥1a 019/08
Tz——020A —gz-{N3a AQv3y
I epesIvs
ar ——gr| 9S/6LY NI =
SS/8LY HINI ==
i LN ety b o1=aNSY 0
0LV |1 —ge £s/0LY W10 4—r poin 3 [p
ol e S wvle—| 2 2 o sator
A7 IV 9av 0A 90 90
3 4 413 1T
o — £ QY |—— S0 SQ 57
sy — 2V ¥av |r—) va
2 113
W | — LIV £av rr—— £0 £0 |
£V | 3 0w 2QV |pr—— 20 20 |
2V g 7 6v LaY e 10 10 (5
M 7 v 0QV |57 00 00 ¢
ov |g
9808 £LESBA
L] 1

