

Practical Workbook

CS-353

Microprocessor and Their Applications

(TCIT)

Department of Computer & Information Systems Engineering

NED University of Engineering & Technology,

Name : _____________________________

Year : _____________________________

Batch : _____________________________

Roll No : _____________________________

Department: __________________________________

INTRODUCTION

Microprocessors play a vital role in the design of digital systems. They are found in a wide range of

applications such as process control, communication systems, digital instruments and consumer

products. Before embedding microprocessor in any system, profound knowledge and full

understanding of the architecture and the instruction set of that microprocessor is imperative.

First two lab sessions provide an in depth coverage of the instruction set of 8088 microprocessor. In next

two lab sessions an Introduction to Assembly Language programming is provided so that the students

have a good knowledge of programming as well as the environments like MASM (Microsoft Macro

Assembler) and TASM etc.

Further laboratory exercises enable the students to enhance their assembly language programming skills.

Interfacing techniques are introduced, which gives students an opportunity to interface various I/O

devices with the trainer board.

After studying the architecture and instruction set of 8088 microprocessor, students are encouraged to

undertake a mini project. This project enables the students to design their own microprocessor-based

system. Also students are encouraged to take project other than the one mentioned in the table of contents.

Programmable Logic Controllers (PLCs) are microprocessor-based devices used to control industrial

processes or machines. They provide advanced functions, including analog monitoring, control and high

speed motion control as well as share data over communication networks. Programmable Logic

controllers are introduced in the last lab session. Programming PLCs and ladder design are discussed in

detail.

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

CONTENTS

Lab Session

No.

Object Page

No.

1 Introduction to Assembly Language Programming. 1

2 Running and Debugging the Assembly Program. 9

3 Calling a Subroutine from another Assembly Language File (Near Procedure). 17

4 Introduction to the trainer. 21

5 Using the trainer. 27

6 Learning Data transfer and Stack operation instructions. 31

7 Learning Logic group of instructions (AND, OR and XOR). 35

8 Studying Logic group of instructions (Shift and rotate). 37

9 Studying Transfer of control instructions (Conditional & Un-Conditional jumps). 40

10 Learning Isolated I/O instructions. 43

11 Learning Arithmetic group of instructions (Add, Subtract, Multiply and Divide). 45

12 Studying Transfer of control instructions (Call and Return). 50

13 Using ADC/DAC. 53

14 Interfacing Printer with 8088. 55

15 Mini Project

15(a) Learning De-multiplexing of Address/Data bus of 8088 Microprocessor. 58

15(b) Creating input / output device select pulses. 59

15(c) Interfacing 8255PPI to the 8088 Microprocessor. 60

16 Programmable Logic Controller

16(a) Series-Parallel Logic 62

16(b)
Latching Circuits

66

16(c) Timer Circuits 69

16(d) Counter Circuits 74

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

1

Lab Session 01

OBJECT
Introduction to Assembly Language Programming

THEORY

ASSEMBLY LANGUAGE SYNTAX

 name operation operand (s) comment

Assembly language statement is classified in two types

Instruction

 Assembler translates into machine code.

Example:

 START: MOV CX, 5 ; initialize counter

Comparing with the syntax of the Assembly statement, name field consists of the label

START:. The operation is MOV, operands are CX and 5 and the comment is ;initialize

counter.

Assembler Directive

 Instructs the assembler to perform some specific task, and are not converted into

machine code.

Example:

 MAIN PROC

MAIN is the name, and operation field contains PROC. This particular directive creates a

procedure called MAIN.

Name field

 Assembler translate name into memory addresses. It can be 31 characters long.

Operation field

 It contains symbolic operation code (opcode). The assembler translates symbolic

opcode into machine language opcode. In assembler directive, the operation field

contains a pseudo-operation code (pseudo-op). Pseudo-op are not translated into machine

code, rather they simply tell the assembler to do something.

 Operand field

 It specifies the data that are to be acted on by the operation. An instruction may

have a zero, one or two operands.

Comment field

 A semicolon marks the beginning of a comment. Good programming practice

dictates comment on every line

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

2

Examples: MOVCX, 0 ;move 0 to CX

 Do not say something obvious; so:

 MOV CX, 0 ;CX counts terms, initially 0

Put instruction in context of program

; initialize registers

DATA REPRESENTATION

Numbers

11011 decimal

11011B binary

64223 decimal

-21843D decimal

1,234 illegal, contains a non-digit character

1B4DH hexadecimal number

1B4D illegal hex number, does not end with

FFFFH illegal hex number, does not begin with digit

OFFFFH hexadecimal number

Signed numbers represented using 2's complement.

Characters

 Must be enclosed in single or double quotes, e.g. ―Hello‖, ‗Hello‘, ―A‖, ‗B‘

 encoded by ASCII code

o 'A' has ASCII code 41H

o 'a' has ASCII code 61H

o '0' has ASCII code 30H

o Line feed has ASCII code OAH

o Carriage Return has ASCII code

o Back Space has ASCII code 08H

o Horizontal tab has ASCII code 09H

VARIABLE DECLARATION

Each variable has a type and assigned a memory address.

Data-defining pseudo-ops

DB define byte

DW define word

DD define double word (two consecutive words)

DQ define quad word (four consecutive words)

DT define ten bytes (five consecutive words)

Each pseudo-op can be used to define one or more data items of given type.

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

3

Byte Variables

Assembler directive format assigning a byte variable

Name DB initial value

A question mark (―?‖) place in initial value leaves variable uninitialized

I DB 4 ;define variable I with initial value 4

J DB ? ;Define variable J with uninitialized value

Name DB "Course" ;allocate 6 bytes for name

K DB 5, 3,-1 ;allocate 3 bytes

 K

 Other data type variables have the same format for defining the variables.

 Like:

 Name DW initial value

NAMED CONSTANTS

 EQU pseudo-op used to assign a name to constant.

 Makes assembly language easier to understand.

 No memory allocated for EQU names.

LF EQU 0AH

o MOV DL, 0AH

o MOV DL, LF

PROMPT EQU "Type your name"

o MSG DB ―Type your name‖

o MDC DB PROMPT

INPUT AND OUTPUT USING DOS ROUTINES

CPU communicates with peripherals through I/O registers called I/O ports. Two

instructions access I/O ports directly: IN and OUT. These are used when fast I/O is

essential, e.g. games.

Most programs do not use IN/OUT instructions. Since port addresses vary among

computer models and it is much easier to program I/O with service routines provided

by manufacturer.

Two categories of I/O service routines are Basic input & output system (BIOS)

routines and Disk operating system (DOS) routines. Both DOS and BIOS routines are

invoked by INT (interrupt) instruction.

05

03

FF

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

4

Disk operating system (DOS) routines

INT 21 H is used to invoke a large number of DOS function. The type of called

function is specified by pulling a number in AH register.

For example

AH=1 input with echo

AH=2 single-character output

AH=9 character string output

AH=8 single-key input without echo

AH=0Ah character string input

Single-Key Input

Input: AH=1

Output: AL= ASCII code if character key is pressed, otherwise 0.

To input character with echo:

MOV AH, 1

INT 21H read character will be in AL register

To input a character without echo:

MOV AH, 8

INT 21H read character will be in AL register

Single-Character Output

 Input: AH=2,

 DL= ASCII code of character to be output

 Output: AL=ASCII code of character

To display a character

MOV AH, 2

MOV DL, ‗?‘

INT 21H displaying character'?'

Combining it together:

MOV AH, 1

INT 21H

MOV AH, 2

MOV DL, AL

INT 21H read a character and display it

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

5

To Display a String

Input: AH=9,

 DX= offset address of a string.

 String must end with a ‗$‘ character.

To display the message Hello!

MSG DB ―Hello!‖

MOV AH, 9

MOV DX, offset MSG

INT 2IH

OFFSET operator returns the address of a variable The instruction LEA (load

effective address) loads destination with address of source

LEA DX, MSG

PROGRAM STRUCTURE

 Machine language programs consist of code, data and stack. Each part occupies a

memory segment. Each program segment is translated into a memory segment by the

assembler.

Memory models

The size of code and data a program can have is determined by specifying a memory

model using the .MODEL directive. The format is:

.MODEL memory-model

Unless there is lot of code or data, the appropriate model is SMALL

memory-model description

SMALL
One code-segment.

One data-segment.

MEDIUM

More than one code-segment.

One data-segment.

Thus code may be greater than 64K

COMPACT
One code-segment.

More than one data-segment.

LARGE

More than one code-segment.

More than one data-segment.

No array larger than 64K.

HUGE

More than one code-segment.

More than one data-segment.

Arrays may be larger than 64K.

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

6

Data segment

A program‘s DATA SEGMENT contains all the variable definitions.

To declare a data segment, we use the directive .DATA, followed by variable and

constants declarations.

.DATA

WORD1 DW 2

MASK EQU 10010010B

Stack segment

It sets aside a block of memory for storing the stack contents.

.STACK 100H ;this reserves 256 bytes for the stack

If size is omitted then by-default size is 1KB.

Code segment

Contain program‘s instructions.

.CODE name

Where name is the optional name of the segment

There is no need for a name in a SMALL program, because the assembler will

generate an error). Inside a code segment, instructions are organised as procedures.

The simplest procedure definition is

name PROC

;body of message

name ENDP

An example

MAIN PROC

;main procedure instructions

MAIN ENDP

;other procedures go here

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

7

Putting it together

.MODEL SMALL

.STACK 100H

.DATA

;data definition go here

.CODE

MAIN PROC

;instructions go here

MAIN ENDP

;other procedures go here

END MAIN

The last line in the program should be the END directive followed by name of the

main procedure.

A Case Conversion Program

Prompt the user to enter a lowercase letter, and on next line displays another message

with letter in uppercase, as:

Enter a lowercase letter: a

In upper case it is: A

TITLE PGM4_1: CASE CONVERSION PROGRAM

.MODEL SMALL

.STACK 100H

.DATA

 CR EQU 0DH

 LF EQU 0AH

 MSG1 DB 'ENTER A LOWER CASE LETTER: $'

 MSG2 DB CR, LF, 'IN UPPER CASE IT IS: '

 CHAR DB ?,'$'

.CODE

MAIN PROC

;initialize DS

 MOV AX,@DATA ; get data segment

 MOV DS,AX ; initialize DS

;print user prompt

 LEA DX,MSG1 ; get first message

 MOV AH,9 ; display string function

 INT 21H ; display first message

;input a character and convert to upper case

 MOV AH,1 ; read character function

 INT 21H ; read a small letter into AL

 SUB AL,20H ; convert it to upper case

Microprocessors Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

8

 MOV CHAR,AL ; and store it

;display on the next line

 LEA DX,MSG2 ; get second message

 MOV AH,9 ; display string function

 INT 21H ; display message and upper case letter in front

;DOS exit

 MOV AH,4CH ; DOS exit

 INT 21H

MAIN ENDP

 END MAIN

Save your program with (.asm) extension.

If ―first‖ is the name of program then save it as ―first.asm‖

EXERCISE:

 Explain, the term Assembly Language Statement:

__

__

__

__

__

 In what manner, the data will be stored in data segment in response of following

statements: Let starting offset is 0000h within data segment.

STR1 DB ‗A‘,‘B‘,‘C‘ : ___

STR2 DB ―LAB SESSION#1 $‖ : _______________________________________

DT1 DW 40, 50, 60, 70, 80 : ___

DT2 DB 10110100b, 45o, 45 : __

THR DB 30h : ___

TAB EQU 09 :___

NUMB1 EQU 8435h : ___

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

9

Lab Session 02
OBJECT

Running and Debugging the Assembly Program

THEORY

ASSEMBLING THE PROGRAM
Assembling is the process of converting the assembly language source program into machine language

object file. The program ―ASSEMBLER‖ does this.

Assemble the program

C:\>masm first.asm
Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [first.OBJ]: first

Source listing [NUL.LST]: first

Cross-reference [NUL.CRF]: first
47338 + 430081 Bytes symbol space free

0 Warning Errors

0 Severe Errors

After assembling the program as shown above you will find two additional files with the object file,

automatically generated by the assembler, in your directory i.e. the list file and the cross-reference file.

Name must be provided for .LST else NUL (nothing) will be generated.

1. OBJECT FILE
A non-executable file contains the machine code translation of assembly code, plus other information

needed to produce the executable.

2. LIST FILE
The list file is a text file that gives you assembly language code and the corresponding machine language

code, a list of names used in the program, error messages and other statistics as shown below for the

assembly file first.asm:

PGM4_1: CASE CONVERSION PROGRAM Page 1-1

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

10

 1 TITLE PGM4_1: CASE CONVERSION PROGRAM

 2 .MODEL SMALL

 3 .STACK 100H

 4 .DATA

 5 = 000D CR EQU

 0DH

 6 = 000A LF EQU

 0AH

 7 0000 45 4E 54 45 52 20 MSG1 DB 'ENTER A LOWER

 CASE LETTER: $'

 8 41 20 4C 4F 57 45

 9 52 20 43 41 53 45

 10 20 4C 45 54 54 45

 11 52 3A 20 20 24

 12 001D 0D 0A 49 4E 20 55 MSG2 DB 0DH, 0AH, 'IN U

 PPER CASE IT IS: '

 13 50 50 45 52 20 43

 14 41 53 45 20 49 54

 15 20 49 53 3A 20 20

 16 0035 00 24 CHAR DB ? ,'$'

 17 .CODE

 18 0000 MAIN PROC

 19 ; initialize DS

 20 0000 B8 ---- R MOV AX,@DATA ; get data segment

 21 0003 8E D8 MOV DS, AX ; initialize DS

 22 ;print user prompt

 23 0005 8D 16 0000 R LEA DX,MSG1 ; get first message

 24 0009 B4 09 MOV AH,9 ; display string

function

 25 000B CD 21 INT 21H ; display first

message

 26 ;input a character and

 ;convert to uppercase

 27 000D B4 01 MOV AH,1 ; read character

function

 28 000F CD 21 INT 21H ;read a small letter

into AL

 29 0011 2C 20 SUB AL,20H ; convert it to upper case

 30 0013 A2 0035 R MOV CHAR,AL ; and store it

 31 ;display on the next line

 32 0016 8D 16 001D R LEA DX,MSG2 ;get second message

 33 001A B4 09 MOV AH,9 ; display string

function

 34 001C CD 21 INT 21H ; display message and

 ;upper case letter in front

 35 ;DOS exit

PGM4_1: CASE CONVERSION PROGRAM Page 1-2

 36 001E B4 4C MOV AH,4CH ; DOS e

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

11

 xit

 37 0020 CD 21 INT 21H

 38 0022 MAIN ENDP

 39 END MAIN

PGM4_1: CASE CONVERSION PROGRAM Symbols-1

Segments and Groups:

 N a m e Length Align Combine Class

DGROUP GROUP

 _DATA 0037 WORD PUBLIC 'DATA'

 STACK 0100 PARA STACK 'STACK'

_TEXT 0022 WORD PUBLIC 'CODE'

Symbols:

 N a m e Type Value Attr

CHAR L BYTE 0035 _DATA

CR . NUMBER 000D

LF . NUMBER 000A

MAIN N PROC 0000 _TEXT Length = 0022

MSG1 L BYTE 0000 _DATA

MSG2 L BYTE 001D _DATA

@CODE TEXT _TEXT

@CODESIZE TEXT 0

@CPU TEXT 0101h

@DATASIZE TEXT 0

@FILENAME TEXT cc

@VERSION TEXT 510

 32 Source Lines

 32 Total Lines

 23 Symbols

 46146 + 447082 Bytes symbol space free

 0 Warning Errors

 0 Severe Errors

3. CROSS-REFERENCE FILE
List names used in the program and the line number.

LINKING THE PROGRAM
Linking is the process of converting the one or more object files into a single executable file. The program

―LINKER‖ does this.

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

12

C:\>link first.obj;
Microsoft (R) Overlay Linker Version 3.64

Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

RUNNING THE PRORAM
On the command line type the name of the program to run.

C:\>first.exe
ENTER A LOWER CASE LETTER: a

IN UPPER CASE IT IS: A

DEBUGGING
DEBUG is a primitive but utilitarian program, supplied with MS-DOS, with a small easy to learn command

set. After assembling and linking the program in previous practical, (first.asm) we take the first.exe into

DEBUG.
On the MS-DOS prompt type the following command,

C:\>DEBUG first.exe

-

DEBUG comes back with its ―-―command prompt.

To view registers and FLAGS, type ―R‟

C:\>debug first.exe

-R
AX=0000 BX=0000 CX=0030 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000

DS=1189 ES=1189 SS=119C CS=1199 IP=0000

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

13

NV UP EI PL NZ NA PO NC

1199:0000 B89A11 MOV AX,119A

-

As we know 8086 has 14 registers, all of these registers are shown by DEBUG with different values stored

in these registers.

FLAG REGISTER

The letters pairs on the fourth line are the current setting of some of the status and control FLAGS. The

FLAGS displayed and the symbols DEBUG uses are the following:

To change the contents of a register-for example, AX to 1245h

-RDX
DX 0000

:1245

Note:- DEBUG assumes that all numbers are expressed in hex. Now let us verify the

change, through ―R‟ command.

DX now contain 1245h.
The next instruction to be executed by the CPU is written on the last line with its address in the memory.

Let us execute each instruction one by one using „T‟ trace command. But before that, just check whether

the ―.exe‟ file is representing the same assembly language program or not, using the U (unassembled)

command.

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

14

The U command by default shows 32 bytes of program coding. The last instruction shown above is not our

last program‘s instruction. To see the remaining instructions, specify directly some address ranges ahead.

Now execute instructions one be one using T command.

AX now have the segment number of the data segment. Again press T for one more time will execute the

instruction MOV DS, AX as shown on the last line above. This will initialize the data segment register with

the data segment address of the program.

The next command LEA DX, [0002] will load the offset address of MSG1 in DX which is 0002.

Check the contents of the data segment using the D command:

We can see that the string variables initialized in the Data Segment has been successfully loaded into the

memory locations as above.
Now through MOV AH, 09 and interrupt command -g 000d, MSG1will be displayed as shown below:

Pressing T one more time will move 01 in AH so that we can take input.

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

15

Now through interrupt command -g 0011, user will be prompted to enter a lower case letter As you can

see, ‗a‘ is entered as input, so AX will now contain 0161 where 61 is the ASCII code of

‗a‘.

Now the SUB command will subtract 20 out of the contents of AL to perform case

conversion.

Again pressing ‗t‘ will store the case conversion output i.e. ‗A‘ in memory.
Now to display MSG2, its offset address will be loaded in DX:

MOV AH, 09 and interrupt command are used to print the string on screen as done before. The result will

be displayed as follows:

This message indicates that the program has run to completion. The program must be reloaded to execute

again. Now leave the DEBUG using ―Q‟,

EXEERCISE:
Write a program that asks user to enter two numbers to be added and then display the

result with appropriate message on the monitor screen.

__

__

__

__

__

__

__

__

__

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

16

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

17

Lab Session 03

OBJECT

Calling a subroutine from another assembly file as a near procedure

THEORY

Near call—A call to a procedure within the current code segment (the segment currently pointed to by the

CS register), sometimes referred to as an intrasegment call.

Procedure Declaration

 The syntax of procedure declaration is the following:

PROC name NEAR

; body of procedure

ret

ENDP name

The CALL Instruction

 CALL invokes a procedure

 call name

where name is the name of a procedure.

Executing a CALL

 The return address to the calling program (the current value of the IP) is saved on the stack

 IP get the offset address of the first instruction of the procedure (this transfers control to the

procedure)

The RET instruction

 To return from a procedure, the instruction

 ret pop_value
is executed.

 The integer argument pop_value is optional.

 ret causes the stack to be popped into IP.

A Case Conversion Program
Prompt the user to enter a lowercase letter, and on next line displays another message with letter in

uppercase, as:
Enter a lowercase letter: a

In upper case it is: A

We will create two different assembly files to implement case conversion. First file contains the code that

will prompt user to enter a lower case letter. This file contains a call to a near procedure named

CONVERT, which is used to perform case conversion. The second file contains the code of the procedure

CONVERT. So, when the procedure CONVERT is invoked, the given lower case letter will be converted

to upper case. The control will then be returned back to the calling procedure in the first file which will

display the output.

Assembly code for both of the files is given below:

TITLE PGM4_2: CASE CONVERSION
EXTRN CONVERT: NEAR
.MODEL SMALL

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

18

.STACK 100H

.DATA
MSG DB 'ENTER A LOWER CASE LETTER: $'
.CODE
MAIN PROC
 MOV AX,@DATA ; get data segment
 MOV DS,AX ; initialize DS
;print user prompt
 LEA DX,MSG ; get first message
 MOV AH,9 ; display string function
 INT 21H ; display first message
;input a character and convert to upper case
 MOV AH,1 ; read character function
 INT 21H ; read a small letter into AL
 CALL CONVERT ; convert to uppercase
 MOV AH,4CH
 INT 21H ;DOS exit
MAIN ENDP
 END MAIN

Save your program with (.asm) extension. If ―first‖ is the name of program then save it

as ―first.asm‖.

TITLE PGM4_2A : CASE CONVERSION
PUBLIC CONVERT
.MODEL SMALL
.DATA
MSG DB 0DH, 0AH, 'IN UPPER CASE IT IS: '
CHAR DB -20H,'$'
.CODE
CONVERT PROC NEAR
;converts char in AL to uppercase
 PUSH BX
 PUSH DX
 ADD CHAR,AL
 MOV AH,9
 LEA DX,MSG
 INT 21H
 POP DX
 POP BX
 RET
CONVERT ENDP
 END

Save the above program as well with (.asm) extension. If ―second‖ is the name of

program then save it as ―second.asm‖.
Now follow the steps as mentioned in the previous lab session to assemble the two files. First perform all

the steps to assemble and create .obj file for the first program, list file and cross reference file will also be

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

19

generated automatically by the assembler for the first program. Now, do the same for the second program.

Observe the list files for both the programs yourself.
Now we have to link the two files. For this, write the following line on the command prompt:

>link first + second

Then give any name to the resultant file (e.g.: first). Now we have a single .exe file to perform case

conversion. Write following line on the command prompt:

>debug first.exe
Check whether the .exe file is representing the same assembly language program or not, using the U

(unassembled) command.

The U command by default shows 32 bytes of program coding. To see the remaining instructions, specify

directly some address ranges ahead.

To see initial condition of registers, type R command.

Now execute instructions one be one using T command.

Through above commands, we have initialized the data segment, verify by using D command.

You can see in the above figure that the data segment is initialized with the messages. Now execute the

assembly and interrupt commands and note down the observations stepwise.

EXERCISE 1
Write a program that takes two numbers as input and performs addition or subtraction

(asks user to select any one operation). The code for addition/subtraction of the numbers

should be present in another assembly file that should be called as a near procedure in the

first file.

__

__

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

20

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

21

Lab Session 04

OBJECT

Introduction to the trainer.

THEORY

The MC 8088/EV microcomputer trainer is a microprocessor controlled educational

system, based on 8088, conceived to face any problem concerning the study and use of

microprocessor systems.

The 8088 is one of the most common microprocessors and so it can be of help for

studying the structure and general function of PCs. Consequently a fundamental step in

the evolution of PCs is the introduction, by IBM of this kind of microprocessor into the

PC ―IBM PC‖ in 1981.

The basic MC8088/EV contains all the necessary components for the study of this kind of

systems (8088 microprocessor, RAM and EPROM memory, liquid crystal display and

keyboard, serial and parallel interface, analog inputs and outputs, troubleshooting

section).

Technical characteristics of the trainer are:

 8088/4.77 MHz microprocessor;

 16 Kbytes system EPROM;

 16*2 Kbyte user EPROM;

 2 Kbyte RAM memory expandable to 6 Kbyte;

 Keyboard (USA type PC keyboard);

 Liquid crystal display (max 40 characters : 2 lines with 20 characters each);

 Buzzer;

 Cassette recorder interface;

 CENTRONICS parallel interface;

 8 bit IN/OUT parallel ports;

 serial interface (standard RS-232);

 BUS expansion interface;

 Analog output with 8-bit D/A converter;

 Analog input with 8-bit A/D converter;

 Device for troubleshooting (Num.max.=8);

 8+2 logic probes for fault insertion;

 Power supplies: 5V/3A, +/-12V/0.3A;

 EPROM monitor with:

 Register display and edit

 Memory display and edit

 Continuous, step-by-step, break-points program run

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

22

 Load and save on cassette recorder.

General operation:

All the system‘s operations are controlled by microprocessor 8088 (IC1). The clock is

generated by an oscillator composed by inverters TTL-7404 (IC15) and by the system

quartz (14.318 MHz). With the two J-K flip flops included in IC 74107 the original

frequency is divided to obtain the microprocessor clock.

The general RESET line, used by UART also, is short circuited to ground by a condenser

switching on the system (logic level ―0‖) while this line returns to logic level ―1‖ after

few m-seconds.

The data, addresses and control lines bus are buffered with ICs type 74244, 74245 and

74373 (IC3, IC2, IC4, IC8, IC16).

The selection among the devices concerned with the processor (EPROM memory, RAM,

I/O ports…) is made by ICs type IC17, IC19, IC21, IC22, IC23 and IC24.

These components type 74139 and 74138 are line decoders, 21N – 4OUT and 3IN –

8OUT respectively. The logic combination of the two or three input lines selects one of

the four or eight possible outputs and the selected device because these lines are

connected to the devices enable ones.

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

23

EXERCISES
Identify the modules M1 to M12 by writing their names on the figure below. Describe

each module in the space provided for this purpose.

M1

 M2
 M1

 M3

 M4
 M5

 M6

 M7

 M8

 M9

M10 M11

 M12

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

24

Module M1:

__

__

__

__

Module M2:

__

__

__

__

Module M3:

__

__

__

__

Module M4:

__

__

__

__

Module M5:

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

25

Module M6:

__

__

__

__

Module M7:

__

__

__

__

Module M8:

__

__

__

__

Module M9:

__

__

__

__

Module M10:

__

__

__

__

Microprocessors Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

26

Module M11:

__

__

__

__

Module M12:

__

__

__

__

Microprocessors Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 27

Lab Session 05

OBJECT

Using the trainer.

THEORY

The monitor commands are given below:

Command

Name Purpose Syntax

A Assembler To let the user to type

8088 assembly language

programs into memory

and assemble them into

machine code line by

line.

(1) A

(2) A <addr>

L

Disassembler

To translate

(disassemble) a block of

memory into 8088

assembly instructions.

(1)

(2) L

(3) L <addr1>

(4) L <addr1> / <n>

(5) L <addr1> <addr2>

G

Go

To execute a program in

memory.

(1)

(2) G

(3) G <addr>

S

Step

To single-step a

program or execute a

specified number of

instructions and then

stop with a display of

register contents on the

screen; execution starts

from the address pointed

to by the CS regirter and

the IP register.

(1)

(2) S

(3) S n

B

Breakpoint

To set up to three

breakpoints or display

their current settings.

When a program is on

execution and runs into

a breakpoint address, the

program execution will

be halted.

(1)

(2) B

(3) B <n>

(4) B <n> <addr>

 (1)

Microprocessors Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 28

C Cancel

Breakpoint

To cancel one or all of

the breakpoints set

previously.

(2) C

(3) C <n>

X

Register

To display or change the

contents of any of the

registers.

(1)

(2) X

(3) X <register name>

M

Memory

To display or change the

contents of a memory

location or a range of

memory location.

(1)

(2) M

(3) M <addr1>

(4) M <addr1> <addr2>

(5) M <addr1> <addr2> /

<data1> /

I

Insert

To insert data into a

memory location or a

portion of memory

locations.

(1)

(2) I

(3) I /<data1> [data2] …/

(4) I <addr1>

D

Delete

To delete a byte of data

or a segment of data in

memory.

(1)

(2) D

(3) D / <n>

(4) D <addr1> / <n>

F

Find

To search for a specified

value or set of values in

memory.

(1)

(2) F / <datastring>

(3) F <addr1> / <datastring>

(4) F <addr1> <addr2> /

<datastring>

J

Jump

To directly jump to the

particular address from

which program

execution must start.

(1) J <addr>.

T

Transfer

To copy a range of

memory contents to

another area in memory.

(1)

(2) T <addr1> <addr2> <addr3>

(3) T <addr4> <addr5> / <n>

P

Pause

To adjust the speed of

displaying on the screen.

(1) P <n>

N

Input

To input and display in

hexadecimal one byte of

data from the specified

port.

(1) N <port_address>

O

Output

To send one or more

(1) O <port_address> / <data>

Microprocessors Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 29

bytes of data to a

specified output port.

W

Write

To record the contents

of a range of memory on

tape.

(1) W <addr1> <addr2> /

<file_name>

R

Read

To read the contents

from tape and copy in

the memory.

(1)

(2) R / <file_name>

(3) R <addr> / <file_name>

(4) R

(5) R <addr>

EXERCISE

1. Write down the machine code for the program after passing through Assembler and

also write the output of Disassembler.

2. By using single stepping observe the contents of internal registers of microprocessor

during program execution.

3. Set breakpoints at the addresses 000C, 0012 and 0018 then run the program to the end

by Canceling the breakpoints.

4. Display the registers at each breakpoint in the previous step.

5. Transfer the program to location 0040 onwards.

6. Now jump to 0040 address and execute the program.

7. Note the contents of memory where the program is stored. Also change the contents

of memory location 0015 to AA. Delete the data present at memory location 0008.

MOV AX , 1111

MOV BX , 0200

MOV CX , 3333

MOV DX , 4444

MOV WORD [0200] , 6A9E

MOV DX , [0200]

MOV CX , DX

MOV AL , [0200]

MOV [0100] , AL

INT 7

Microprocessors Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 30

OBSERVATIONS

Observe the contents of registers by using single stepping and record them. (Task 2)

Register After 1
st

instruction

After 2
nd

instruction

After 3
rd

instruction

After 4
th

instruction

After 5
th

instruction

AX

BX

CX

DX

DS:[0200]

DS:[0100]

Register After 6
th

instruction

After 7
th

instruction

After 8
th

instruction

After 9
th

instruction

AX

BX

CX

DX

DS:[0200]

DS:]0100]

Microprocessors Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 31

Lab Session 06

OBJECT

Learning Data transfer and Stack operation instructions.

THEORY

Opcode of following MOV instructions: 100010dw oorrrmmm disp

MOV reg1 , reg2 ; copy the contents of 8-bit register ―reg2‖ in the 8-bit register

 ―reg1‖.

MOV mem , reg ; copy the contents of 8-bit register ―reg‖ in memory location

 ―mem‖.

MOV reg , mem ; copy the contents of memory location ―mem‖ into the register

 ―reg‖.

Opcode of following MOV instruction: 100010dw oorrrmmm disp data

MOV mem , imm ; copy the immediate data ―imm‖ into memory location ―mem‖.

Opcode of following MOV instruction: 1011wrrr data

MOV reg , imm ; copy the immediate data ―imm‖ into the register ―reg‖.

Opcode of following MOV instructions: 101000dw disp

MOV mem , acc ; copy the contents of accumulator into memory location

 ―mem‖.

MOV acc , mem ; copy the contents of memory location ―mem‖ into

 accumulator.

Instruction opcode Description

PUSH reg 01010rrr pushes the contents of register ―reg‖

onto the stack.

PUSH mem 11111111 oo110mmm disp pushes the contents of memory location

―mem‖ onto the stack.

PUSH seg 00sss110 pushes the contents of segment register

―seg‖ onto the stack.

PUSH imm 011010s0 data pushes the immediate data ―imm‖ onto

the stack.

PUSHA/PUSHAD 01100000 pushes all the registers onto the stack

PUSHF/PUSHFD 10011100 pushes the flags onto the stack.

POP reg 01011rrr pops the contents of register ―reg‖ from

top of the stack.

Microprocessors Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 32

POP mem 10001111 oo000mmm disp pops the contents of memory location

―mem‖ from top of the stack.

POP seg 00sss111 pops the contents of segment register

―seg‖ from top of the stack

POPA/POPAD 01100001 pops all the registers from the stack.

POPF/POPFD 10010000 pops the flags from the stack.

PUSHA and POPA instructions are not available in 8008 microprocessor.

ASSEMBLY PROGRAM

1. MOV AX , B386
2. MOV BX , 0200
3. MOV CX , 0A5C
4. MOV DX , D659
5. MOV BP , 0300
6. MOV ES , CX
7. MOV WORD[0200], 95D8
8. ADD AX , BX
9. PUSH AX
10. PUSH [BX]
11. PUSH DS
12. PUSHF
13. PUSH DX
14. POP CX
15. POP DI
16. POP ES
17. POP [BP]
18. POPF
19. INT 7

OBSERVATIONS

By using single stepping observe the working of the program.

Inst# AX BX CX DX Flag BP SP ES DS DI [0200] [0300]
7

th

8
th

13
th

14
th

15
th

16
th

17
th

18
th

Microprocessors Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 33

Note the contents of the SS: SP register after 13
th

 instruction and then examine the

contents of the corresponding memory locations pointed out to by SS:SP.

EXERCISE 1

Write a program, which

1. Loads AX, BX, CX and DX registers with A154, 7812, 9067, BFD3.

2. Exchange lower byte of CX and higher byte of DX registers by using memory

location 0150 in between the transfer. Then stores CX and DX registers onto memory

location 0170 onward.

3. Exchange higher byte of AX and higher byte of BX registers by using memory

location 0160 in between the transfer. Then stores AX and BX registers onto memory

location 0174 onward.

4. Also draw the flow chart of the program.

 Program Flowchart

Microprocessors Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 34

OBSERVATIONS 1

 Observe the contents of memory location from 0170 to 0177 and record them below

in a table.

 Observe the contents of registers by using single stepping and record the final

contents below.

Contents of memory location Contents of Registers

____________________________________ AX

____________________________________ BX

____________________________________ CX

____________________________________ DX

EXERCISE 2

Write a program that produces certain delay and then increment the Accumulator register.

When accumulator produces a carry then the buzzer should generate tone for a certain

time. Implement this program using subroutine. The length of delay is passed to the delay

subroutine as a parameter, using stack. Also draw the flowchart. You can also use any

assembler for this exercise.

 Program Flowchart

Microprocessors Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 35

Lab Session 07

OBJECT

Learning Logic group of instructions (AND, OR and XOR).

THEORY

Opcode Inst. Operand1, Operand2 Description

001000dw oorrrmmm disp AND

reg/ mem, reg/ mem

Perform logical operation

on register/memory with

the memory or the second

register. Both the two

operands cannot be the

memory location.

000010dw oorrrmmm disp OR

001100dw oorrrmmm disp XOR

100000sw oo100mmm disp data AND

reg/mem/acc, imm

Perform logical operation

on the ―immediate value‖

with the contents of the

register / memory location

or specifically the

accumulator.

100000sw oo001mmm disp data OR

100000sw oo100mmm disp data XOR

ASSEMBLER PROGRAM

1. MOV AX, 8A53

2. MOV BX, 0200

3. MOV CX, 692D

4. MOV DX, E6CB

5. MOV WORD [BX], 7B8A

6. AND AX, BX

7. AND CX, [BX]

8. OR [BX], CX

9. OR WORD [BX], 6F0C

10. XOR AX, 94D7

11. XOR DX, C4D1

12. INT 7

Microprocessors Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 36

OBSERVATIONS

By using single stepping record the contents of following registers:

Register After 5
th

instruction

After 6
th

instruction

After 7
th

instruction

After 8
th

instruction

After 9
th

instruction

After 10
th

instruction

 After 11
th

instruction

AX

BX

CX

DX

Flag
Word[0200]

EXERCISE 1

Write a program which mask the bits of AX register, by setting left-most 4 bits ,resetting

right most 4 bits and complement bit position number 9 and 10.(Hint: Use AND,OR and

XOR instructions for masking).

 Program Flowchart

EXERCISE 2

An ASCII coded number can be converted to BCD by masking. Write a program ,which

converts ASCII 30H - 39H to BCD 0-9. Use any assembler for this exercise.

 Program Flowchart

Microprocessors Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

37

Lab Session 08

OBJECT

To study the shift and rotate instructions present in 8088 instruction set.

THEORY

Description

Instruction Op-code

TT

T

val

ue

1101000w

ooTTTmmm disp

1101001w

ooTTTmmm disp

1101001w ooTTTmmm

disp

Shift/otate one time Shift/Rotate

according to the

contents of the CL

register

Shift/Rotate according to the

immediate memory location

―mem‖

Rotate left without carry ROL reg/mem , 1 ROL reg/mem , CL ROL reg/mem , imm 000

Rotate right without carry ROR reg/mem , 1 ROR reg/mem , CL ROR reg/mem , imm 001

Rotate left with carry RCL reg/mem , 1 RCL reg/mem , CL RCL reg/mem , imm 010

Rotate right with carry RCR reg/mem , 1 RCR reg/mem , CL RCR reg/mem , imm 011

Shift logic left SAL reg/mem , 1 SAL reg/mem , CL SAL reg/mem , imm 100

Shift Arithmetic left SHL reg/mem , 1 SHL reg/mem , CL SHL reg/mem , imm ″

Shift logic right SHR reg/mem , 1 SHR reg/mem , CL SHR reg/mem , imm 101

Shift arithmetic right SAR reg/mem , 1 SAR reg/mem , CL SAR reg/mem , imm 111

ASSEMBLER PROGRAM

1. 0000 MOV AX , 1111
2. 0003 MOV BX , 2222
3. 0006 MOV CX , 3303
4. 000C MOV SI , 9254
5. 000F MOV WORD [100] , 6655
6. 0015 MOV BYTE[123] , 77
7. 001A MOV WORD [126] , 9988
8. 0020 ROL AX , 1
9. 0022 ROL BYTE [100] , 1
10. 0026 ROL AX , CL
11. 0028 ROL BYTE [100] , CL
12. 002C RCL BX , 1
13. 002E RCL WORD [100] , 1

Microprocessors Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

38

14. 0032 RCL AX , CL
15. 0034 RCL WORD [100] , CL
16. 0038 ROR AX , 1
17. 003A ROR AX , CL
18. 003C ROR BYTE [126] , CL
19. 0040 RCR BX , 1
20. 0042 RCR BYTE [127] , CL
21. 0046 SHL BX , 1
22. 0048 SHL BYTE [126] , CL
23. 004C SAR SI , 1
24. 004E SAR SI ,CL
25. 0050 SHR BYTE [123] , 1
26. 0054 SHR BYTE [123] , CL
27. 0058 INT 7

OBSERVATIONS

By using single stepping observe the contents of the registers and memory locations that

are used to store data in the program.

 AX BX SI CF Memory Locations

 100 101 123 126 127

7. _____ _____ _____ _____ _____ _____ _____ _____ _____

8. _____ _____ _____ _____ _____ _____ _____ _____ _____

9. _____ _____ _____ _____ _____ _____ _____ _____ _____

10. _____ _____ _____ _____ _____ _____ _____ _____ _____

11. _____ _____ _____ _____ _____ _____ _____ _____ _____

12. _____ _____ _____ _____ _____ _____ _____ _____ _____

13. _____ _____ _____ _____ _____ _____ _____ _____ _____

14. _____ _____ _____ _____ _____ _____ _____ _____ _____

15. _____ _____ _____ _____ _____ _____ _____ _____ _____

16. _____ _____ _____ _____ _____ _____ _____ _____ _____

17. _____ _____ _____ _____ _____ _____ _____ _____ _____

18. _____ _____ _____ _____ _____ _____ _____ _____ _____

19. _____ _____ _____ _____ _____ _____ _____ _____ _____

20. _____ _____ _____ _____ _____ _____ _____ _____ _____

21. _____ _____ _____ _____ _____ _____ _____ _____ _____

22. _____ _____ _____ _____ _____ _____ _____ _____ _____

23. _____ _____ _____ _____ _____ _____ _____ _____ _____

24. _____ _____ _____ _____ _____ _____ _____ _____ _____

25. _____ _____ _____ _____ _____ _____ _____ _____ _____

26. _____ _____ _____ _____ _____ _____ _____ _____ _____

Microprocessors Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

39

EXERCISE

Write a program, which multiply two 8-bit numbers using add and shift logic. Check the

program by

(i) loads accumulator with 20H and then multiply it by 10H.

(ii) loads BL with 10H and multiply it by 12H.

Use any assembler of your choice for this purpose.

Also draw the flow chart of the program.

 Program Flowchart

OBSERVATIONS 1
Value of the Multiplicand = ------------------.

Value of the Multiplier = ------------------.

Result of Multiplication = -------------------.

OBSERVATIONS 2
Value of the Multiplicand = ------------------.

Value of the Multiplier = ------------------.

Result of Multiplication = -------------------.

Microprocessors Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 40

Lab Session 09

OBJECT

Studying Transfer of control instructions (Conditional & Un-Conditional jumps).

THEORY

Jump Instructions transfers the control of program to the location addressed by the

specified location (as listed in description column)

Instruction Opcode Description

JMP label (short) 11101011 disp IP+disp

JMP label (near) 11101001 disp

JMP label (far) 11101010 IPnew CSnew Label

JMP reg (near) 11111111 oo100mmm contents of register ―reg‖

JMP mem (near) memory location ―mem‖

JMP mem (far) 11111111 oo101mmm

Jcnd label (8-bit disp) 0111cccc disp IP+disp; when condition

―cnd‖ becomes true Jcnd label (16-bit disp) 00001111 1000cccc disp

Condition Codes Mnemonic Flag Description

0000 JO O = 1 Jump if overflow

0001 JNO O = 0 Jump if no overflow

0010 JB/JNAE C = 1 Jump if below

0011 JAE/JNB C = 0 Jump if above or equal

0100 JE/JZ Z = 1 Jump if equal/zero

0101 JNE/JNZ Z = 0 Jump if not equal/zero

0110 JBE/JNA C = 1 + Z = 1 Jump if below or equal

0111 JA/JNBE O = 0 . Z = 0 Jump if above

1000 JS S = 1 Jump if sign

1001 JNS S = 0 Jump if no sign

1010 JP/JPE P = 1 Jump if parity

1011 JNP/JPO P = 0 Jump if no parity

1100 JL/JNGE S . O Jump if less than

1101 JGE/JNL S = 0 Jump if greater than or equal

1110 JLE/JNG Z = 1 + S . O Jump if less than or equal

1111 JG/JNLE Z = 0 + S = O Jump if greater than

Microprocessors Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 41

ASSEMBLER PROGRAM 1

INT 8 Console In (Input a character from the keyboard and store it into the AL reg.

INT B Console Out (Output a character contained in AL to the LCD.

JMP 0000 Jump to the first instruction.

OBSERVATIONS 1

By using single stepping observe the working of the program. Record the content of the

AX registers.

 Character AX

1

2

3

4

5

ASSEMBLER PROGRAM 2
MOV AX, 0000

MOV BX, 0000

INT 8 ;Input from Keyboard

INT B ;Output the character

MOV BL, AL

INT 8 ;Input from Keyboard

INT B ;Output the character

CMP AX, BX ;Compare the values in AX and BX

JNZ 0000 ;if not equal jump to start of program.

INT 7

Microprocessors Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 42

OBSERVATIONS 2

By using single stepping observe the contents of registers AX, BX after execution of each

instruction.

 (Different Key input) (Same Key Input)

 AX BX AX BX
After 1

st
 instruction __________ __________ __________ __________

After 2
nd

 instruction __________ __________ __________ __________

After 3
rd

 instruction __________ __________ __________ __________

After 4
th

 instruction __________ __________ __________ __________

After 5
th

 instruction __________ __________ __________ __________

After 6
th

 instruction __________ __________ __________ __________

After 7
th

 instruction __________ __________ __________ __________

After 8
th

 instruction __________ __________ __________ __________

After 9
th

 instruction __________ __________ __________ __________

Flag register after

8
th

 instruction

__________ __________ __________ __________

EXERCISE

Write a program, which prints your name on the LCD display when ‗space‘ key is

pressed from the keyboard. Implement using conditional jump instruction. Also draw the

flow chart of the program.

 Program Flowchart

Microprocessors Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 43

Lab Session 10

OBJECT

Learning Isolated I/O instructions.

THEORY

IN acc , pt opcode = 1110010w port# ; Takes an 8-bit binary

number as input from input port ―port#‖ and stores that in Accumulator.

IN acc , DX opcode = 1110110w ; Takes an 8-bit binary number as input from

input port addressed by DX and stores that in Accumulator.

OUT pt , acc opcode = 1110010w port# ; Outputs an 8-bit number from

Accumulator to output port number ―port#‖.

OUT DX , acc opcode = 1110111w ; Outputs an 8-bit number from Accumulator

to output port addressed by DX.

ASSEMBLER PROGRAM

INPUT PORT

MOV AX , 0

MOV DX , 1A3

IN AL , DX

INT 7

OUTPUT PORT

MOV AL , 41

MOV DX , 1A1

OUT DX , AL

INT 7

S. No. AL Character

1

2

3

4

5

Microprocessors Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 44

EXERCISE

Write a program, which output the first ten numbers of Fibonacci series. You can also use

any assembler for this exercise. (Hint: Use looping technique, to output numbers one by

one in each iteration of loop)

 Program Flowchart

Microprocessors Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 45

Lab Session 11
OBJECT

Learning Arithmetic group of instructions (Add, Subtract, Multiply and Divide).

THEORY

Opcode Inst. Operand1,

Operand2

Description

000000/000101dw

oorrrmmm disp

ADD/SUB reg1, reg2
OR

mem, reg
OR

reg, mem

add / subtract (with carry/borrow)

the contents of the register ―reg‖ or

―mem‖ with / from the register

―reg‖ or ―mem‖
000100/000110dw

oorrrmmm disp

ADC/SBB

100000sw oo000/101mmm

disp data

ADD/SUB reg, imm
OR

mem, imm
OR

acc, imm

add / subtract (with carry/borrow)

the immediate data ―imm‖ with /

from register / memory location or

specifically the accumulator.
100000sw oo010/011mmm

disp data

ADC/SBB

Opcode of following MUL instructions: 1111011w oo100mmm disp

MUL reg ; multiply the contents of register ―reg‖ with the accumulator

 register and return the result in ―AH and AL‖ or ―DX and AX‖.

MUL mem ; multiply the contents of memory ―mem‖ with the accumulator

 register and return the result in ―AH and AL‖ or ―DX and AX‖.

Opcode of following DIV instructions: 1111011w oo110mmm disp

DIV reg ; divide the contents of the accumulator register by the contents of

 register ―reg‖ and return the remainder in AH and the quotient in

 AL or the remainder in DX and the quotient in AX.

DIV mem ; divide the contents of the accumulator register by the contents of

 memory location ―mem‖ and return the remainder in AH and the

 quotient in AL or the remainder in DX and the quotient in AX.

Microprocessors Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 46

ASSEMBLER PROGRAM 1 (Add & Subtract)

ADDITION:

MOV AX , 4000

MOV BX , 0006

MOV CX , 8

ADC AX , BX

LOOP 0009

INT 7

SUBTRACTION
MOV AX , 4000

MOV BX , 0006

MOV CX , 8

SBB AX , BX

LOOP 0009

INT 7

OBSERVATIONS 1

 Using single stepping record the contents of AX register until CX becomes zero

 Addition:

 CX AX CX AX CX AX

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

Subtraction:

 CX AX CX AX CX AX

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

Microprocessors Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 47

ASSEMBLER PROGRAM 2 (MULTIPLY AND DIVIDE)

MULTIPLICATION
 (8-bit) (16-bit)

MOV AX , FF MOV AX , FFFF

MOV CL , 6 MOV CX , 0200

MUL CL MUL CX

INT 7 INT 7

DIVISION
 (8-bit) (16-bit)

MOV AX , 0400 MOV DX , 23

MOV CL , 6 MOV AX , 4

DIV CL MOV CX , 300

INT 7 DIV CX

INT 7

OBSERVATIONS 2
Record values of AX, BX, CX & DX before & after execution of MUL/DIV instruction.

For Multiplication

8-bit:

Before Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

16-bit:

Before Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

Microprocessors Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 48

For Division

8-bit:

Before Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

16-bit:

Before Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

EXERCISES

1) Write a program, which will add the contents of two 32 bit numbers stored in DX

– AX (DX contains the high order word) and memory location WORD [0202] –

WORD [0200].

Program

Microprocessors Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 49

2) Write a program which input ten 8-bit numbers as input from user and output their

sum on LCD display.

 Program Hex code

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

___________________________________ ------------------------------

3) Write a program, which calculate the factorial of any given number (the number

may be used as an immediate operand in the instruction). Use any assembler for

this exercise.

 Program Flowchart

Microprocessors Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 50

Lab Session 12

OBJECT

Studying Transfer of control instructions (Call and Return).

THEORY
Opcode of following CALL instruction: 11101000 disp

CALL label ; transfer the control of program to the location ―IP+disp‖

(near)

Opcode of following CALL instruction: 11101000 IPnew CSnew

CALL label ; transfer the control of program to the location ―label‖

(far)

Opcode of following CALL instructions: 11111111 oo010mmm

CALL reg ; transfer the control of program to the location ―reg‖

(near)

CALL mem ; transfer the control of program to the location of memory ―mem‖

(near)

Opcode of following CALL instruction: 11111111 oo011mmm

CALL mem ; transfer the control of program to the location of memory ―mem‖

(far)

Opcode of following RET instruction: 11000011

RET ; Return the control of program to the main routine (to the

(near) instruction next to the associated CALL instruction)

Opcode of following RET instruction: 11000010 data

RET imm ; Return the control of program to the main routine and changes SP

(near) to address ―SP+imm‖

Opcode of following RET instruction: 11001011

RET ; Return the control of program to the main routine (to the

(far) instruction next to the associated CALL instruction)

Opcode of following RET instruction: 11001010 data

Microprocessors Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 51

RET imm ; Return the control of program to the main routine and changes SP

(far) to address ―SP+imm‖

ASSEMBLER PROGRAM

MOV AX , 5AD8

MOV CX , 0006

MOV WORD[FE], 349A

MOV WORD[100], 9CFF

MOV WORD[102], A9B6

MOV AX , WORD[102]

CALL LABEL

MOV CX , DX

JMP HERE

LABEL: PUSH AX

MOV AX , WORD[FE]

INC WORD[100]

ADD AX , WORD[100]

ROL AX , CL

XOR WORD[102] , AX

SBB WORD[FE] , AX

MOV DX , AX

POP AX

RET

HERE: CMP AX , CX

OBSERVATIONS

By using single stepping observe the contents of registers AX, BX, CX, DX and memory

location FE, 100 and 102.

Before Execution

 AX : __________ ; BX : __________

 CX : __________ ; DX : __________

 SP : __________ ; WORD[FE] : __________

 WORD[100] : __________ ; WORD[102] : __________

After CALL instruction

 AX : __________ ; BX : __________

 CX : __________ ; DX : __________

 SP : __________ ; WORD[FE] : __________

 WORD[100] : __________ ; WORD[102] : __________

Microprocessors Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 52

After RET instruction

 AX : __________ ; BX : __________

 CX : __________ ; DX : __________

 SP : __________ ; WORD[FE] : __________

 WORD[100] : __________ ; WORD[102] : __________

After Execution

 AX : __________ ; BX : __________

 CX : __________ ; DX : __________

 SP : __________ ; WORD[FE] : __________

 WORD[100] : __________ ; WORD[102] : __________

EXERCISE

Write a program, which takes input from port address 3060h then calls a subroutine

having label ‗ADDNOS‘. ADDNOS subroutine adds the inputted values from the

specified input port. The program takes input from port 10 times. Produce a certain delay

by using a subroutine between two consecutive inputs from port. Program stores the final

result as a word on memory location 0200. Also draw the flow chart of the program.

 Program Flowchart

Microprocessors Lab Session 13
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 53

Lab Session 13

OBJECT
Using ADC/DAC

THEORY

Analog Interface

The MC8088 Analog interface provides one 8-bit ADC (0804) and one 8-bit DAC

(0800).

The port address of DAC and ADC is 10C h.

DIGITAL /ANALOG CONVERTER

The digital/analog converter uses an IC34 latch (74374) directly connected to the data

bus in order to give the digital information to the conversion device (DAC – 0800). The

current of the digital signal to be transmitted is converted into the corresponding voltage

signal with the operational IC36 (I – V converter)

ANALOG / DIGITAL CONVERTER

The analog / digital converter uses the ADC0804 for converting and a buffer (74244) for

data bus communication of the system.

DAC PROGRAMMING

This program outputs a value from 00h to FFh on the DAC port. Observe the analog

output of the program using a multi meter.

Program:

 START:

 MOV DX,10C ; Move address of DAC in DX

 MOV AL,0 ; reset AL

 LOOP: INT E ; Display AL in Hex Format

 PUSH AX ; save AL on stack

 INT 8 ; Wait for a keyboard hit

 POP AX

 OUT DX, AL ; OUT to DAC at 10C h

 INC AL

 JNZ LOOP ;if AL is not zero then repeat

 INT 7 ; EXIT

Microprocessors Lab Session 13
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 54

ADC PROGRAMMING

Apply analogue voltage at the analogue input of ADC using variable power supply (0-

10V DC) and take the digital input from the ADC port at 10C h and display it on the

LCD.

Program:

 START:

 MOV DX, 10C ; Move address of ADC in DX

 LOOP: INT 8 ; Wait for a keyboard hit

 IN AL, DX ; IN from ADC at 10C h

 INT E ; display AL on LCD in HEX format

 JMP LOOP ; repeat

 INT 7

OBSERVATION

DAC PROGRAMMING:

Observe the multimeter reading for the following values of AL register.

Value of AL register Multimeter Reading (Volts)

1) 00 ----------------

2) 15 ----------------

3) DE ----------------

4) FC ----------------

ADC PROGRAMMING:

Observe the value of AL register for following values of multimeter.

Multimeter Reading (Volts) Value of AL register

1) 1.5 ----------------

2) 3.8 ----------------

3) 6.3 ----------------

4) 9.8 ----------------

Microprocessors Lab Session 14
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 55

Lab Session 14

OBJECT

Interfacing Printer with 8088

THEORY

PARALLEL PRINTER INTERFACE

This section of the MC8088 trainer board offers 1 OUTPUT parallel port per printer.

The unit contains all the test points related to the MC8088 signals:

 Address

 Data

 Control signals

It also contains an expansion connector on which the bus signals are reported.

This powers the system with external hardware.

The 25 pin connector complete pin-out is shown below:

STROBE 1 14 AUTOFD

D0 2 15 ERROR

D1 3 16 INIT

D2 4 17 SLCT IN

D3 5 18 GROUND

D4 6 19 GROUND

D5 7 20 GROUND

D6 8 21 GROUND

D7 9 22 GROUND

AK 10 23 GROUND

BUSY 11 24 GROUND

PE 12 25 GROUND

SLCT 13

The operation involving the parallel output is controlled by 8 data lines (D0 – D7) and the

two lines related to handshaking: BUSY and STROBE controls.

The data are sent to the printer with an IC47 buffer with 1E0H address.

The BUSY line is connected to line 6 of buffer IC7 (line 6 connected to relative bus data

line with weight 2^6=64) and is used as input.

Microprocessors Lab Session 14
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 56

The STROBE line is used toward the printer and goes from the system to the printer

buffer to inform the printer that the byte to be printed is available on the data lines. It is

connected to line 7 of buffer IC3 and to the data bus line with weight 2^7=128.

The timing diagram for the printing operation is:

 BUSY

 DATA

 STROBE

The BUSY line coming from the printer must be at low logic level for a printing

operation; with high logic level the device is in printing state related to a former

character.

In a second time data to be printed must be introduced and buffer IC47 must be loaded

with byte related to the desired character or control.

At last the line STROBE must be put at low logic level for a moment (STROBE is ON

and low) to memorize bytes to be printed in the printer buffer.

ASSEMBLY PROGRAM

PARALLEL PRINTER PROGRAMMING

PRINTER PORT ADDRESSES

DATA 1E0 H

STROBE 180 H bit 7

BUSY 1C0 H bit 6

This program prints typed characters

0008 : 0000 INT 8 ;load typed character in AL

Microprocessors Lab Session 14
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 57

 0002 PUSH AX

 0003 MOV DX , 1C0 ;read BUSY port

 0006 IN AL , DX

 0007 TEST AL , 40 ;test bit 6 of byte read

 0009 JNZ 3

 00OB POP AX

 00OC MOV DX , 1E0 ;send data to port 1E0h

 00OF OUT DX , AL

 0010 MOV DX , 180 ;generate strobe pulse

 0013 IN AL , DX

 0014 SUB AL, 80

 0016 OUT DX , AL

 0017 ADD AL , 80

 0019 OUT DX , AL

 001A JMP 00

Microprocessors Lab Session 15(a)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 58

Lab Session 15(a)

OBJECT

Learning De-multiplexing of Address/Data bus of 8088 Microprocessor.

THEORY

There is 20-bit address bus and 8-bit data bus present on the chip of 8088 microprocessor.

Lower 8 bits of address and data buses are time multiplexed with each other. For any

machine cycle address comes out of the microprocessor and after some time the bus is

used for data transfer between microprocessor and memory or I/O device. In this way the

address is not present there for the whole machine cycle on the bus. For holding the

address for the full machine cycle we have to design a circuit.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

1. 8088 microprocessor

2. 74LS373 latches

3. 74LS244 buffers

4. 74LS245 buffers

STEPS OF DESIGNING (Connection description)

1. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the

inputs of latch 74LS373. The only address will be available after passing through the

latch.

2. The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.

3. The only address will be available after passing through the latch.

4. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the

inputs of bi-directional buffer 74LS245.

5. The enable pin of the buffer 74LS245 will be connected to the DEN pin of the 8088.

6. The only data will be pass through the buffer in either direction.

7. The DT/R pin of the microprocessor will control the direction of data flow through

the bi-directional buffer.

8. Connect the higher 8 bits of the address bus (A8-A15) to the inputs of buffer

74LS244.

9. Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

10. Connect the same pins to the inputs of buffer 74LS244 to get the status signals S3,

 S4, S5 and S6 from 8088.

Microprocessors Lab Session 15(b)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 59

Lab Session 15(b)

OBJECT

Creating input / output device select pulses

THEORY

The Microprocessor 8088 has 16-bit register to address I/O devices. Here we have to

create device select pulses to select input and output devices. We will use DIP switches

as input device and LEDs as output device.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

5. DIP switches.

6. LEDs.

7. 74LS08 AND gates.

8. 74LS04 hex inverter.

9. 74LS138 line decoder.

STEPS OF DESIGNING (Connection description)

 For input device selection we have to use IO/M and RD signals and address of the

input device to be selected to generate the device select pulse.

 For output device selection we have to use IO/M and WR signals and address of the

output device to be selected to generate the device select pulse.

 As IO/M, RD, WR are active low for I/O operations so we will generate the device

select pulse in given below manner.

IO/M

 RD Input Device Select Pulse

Address

of input device

IO/M

 WR Output Device Select Pulse

Address

of output device

 By using these device select pulse we can select / enable the DIP switches or LEDs

according to the need.

OR

 By using 74138 line decoder we can generate the device select pulses for I/O devices.

Microprocessors Lab Session 15(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 60

Lab Session 15(c)

OBJECT

Interfacing 8255PPI to the 8088 Microprocessor

THEORY

There are three different ports (Port A, Port B and Port C) are available to interface I/O

devices to 8088 microprocessor. There is an internal register, which stores Command

Word so we can call it Command register. Command Word defines the modes of working

of ports of the device. There are three different types of modes present in 8255 to

interface I/O devices to 8088 microprocessor.

Mode 1 : Simple I/O.

Mode 2 : Strobed I/O.

Mode 3 : Handshake I/O.

There are two pins A0 and A1 present on the package of 8255PPI to select the ports.

A1 A0 Select

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Command Register

First of all the Command Register is selected and the Command Word is stored in the

register. After that we can use the ports of 8255PPI according to the function that we

have defined in the Command Word.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

10. 8088 microprocessor.

11. 8255 Programmable Peripheral Interface.

12. DIP switches.

13. LEDs.

14. 74LS373 latches.

15. 74LS244 buffers.

16. 74LS245 buffers.

17. 74LS04 hex inverter.

18. Small capacity RAM IC (e.g. 4016).

19. Small capacity EPROM IC (e.g. 2716).

20. 74LS138 line decoder.

Microprocessors Lab Session 15(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 61

STEPS OF DESIGNING (Connection description)

1. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the

inputs of latch 74LS373. The only address will be available after passing through the

latch.

2. The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.

3. The only address will be available after passing through the latch.

4. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the

inputs of bi-directional buffer 74LS245.

5. The enable pin of the buffer 74LS245 will be connected to the DEN pin of the 8088.

6. The only data will be pass through the buffer in either direction.

7. The DT/R pin of the microprocessor will control the direction of data flow through

the bi-directional buffer.

8. Connect the higher 8 bits of the address bus (A8-A15) to the inputs of buffer

74LS244.

9. Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

10. Connect the same pins to the inputs of buffer 74LS244 to get the status signals S3,

 S4, S5 and S6 from 8088.

11. Define the addresses for selecting 8255PPI, RAM and EPROM ICs.

12. Connect three address pins to the inputs (A, B and C) of 74138 decoder.

13. Connect the enable pins of the decoder 74138 to appropriate address lines.

14. Connect the data bus of microprocessor to the data bus of 8255PPI.

15. A0 and A1 pins of 8255PPI will be connected to A0 and A1 pins of 8088

microprocessor respectively.

16. CS (Chip Select) pin of 8255PPI will be connected to one of the outputs of 74138

decoder.

17. RESET of 8255PPI will be connected to RESET of 8088 microprocessor.

18. RD and WR pins of 8255PPI will be connected to the IORC and IOWC pins of 8088

microprocessor respectively.

19. Connect the address and data buses of EPROM and RAM to the address and data

buses of 8088 microprocessor.

20. CE or CS pin of EPROM and RAM will be connected to one of the outputs of the

74138 decoder.

21. OE pin of the EPROM and RAM will be connected to the RD pin of the

microprocessor.

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 62

Lab Session 16(a)

Series-Parallel Logic

OBJECT

To learn how to handle elements when connecting them in series (an AND circuit) or

in parallel (an OR circuit).

THEORY

Input I1 is ORed with input I2 and this Logical combination of element is ANDed with

input I3. Whether or not input I3 passes power flow to output element O1 depends on

whether input 11 or input 12 passes a current flow.

Suppose we try this new combination of AND and OR functions in Figur 2.

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 63

PROCEDURE

Program the PLC with this circuit:

1. To execute CX-programmer, do the following steps:

 Click the START and go to All Programs.

 Select the folder Omron then the folder CX-Programmer.

 Click on CX-Programmer to start.

2. To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.

A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default – NewPLC1).

Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.

Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4

different windows:

 Ladder design window

 Project work space

 Output Window Error on Compiling

 Watch window I/O Monitor

Ladder Design Window:

1. Develop the given ladder logic in Figure 1 in this window by following these

steps:

 Place a new contact by clicking on it from toolbar and then clicking on ladder

design window at the desired location.

 Write 0.00 in Edit contact and press OK then write I1 in Edit comment field and

press OK.

 Place another new contact by clicking on it from toolbar and then clicking on

ladder design window at the right of I1.

 Write 0.01 in Edit contact and press OK then write I2 in Edit comment field and

press OK.

 Place a new coil by clicking on it from toolbar and then clicking on ladder design

window at the right of I2.

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 64

 Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and

press OK.

 Place a vertical wire connection in between I1 and I2 for connecting I3 in parallel

of I1.

 Place another new contact by clicking on it from toolbar and then clicking on

ladder design window at the bottom of I1.

 Write 0.02 in Edit contact and press OK then write I3 in Edit comment field and

press OK.

2. Compile this program by clicking on Program Menu and by selecting Compile

option. Another window appears with number on errors and warning message.

3. Now change PLC mode to online from PLC menu and selecting Work online OR

by pressing Work On-line button from toolbar. A confirmation dialogue is

displayed, select the Yes pushbutton to connect.

4. Select the Download button from the toolbar. The Download Options dialogue is

displayed.

5. Set the Programs field and select the OK pushbutton.

6. Deselect the Work Online option. Now you can observe the operation of PLC on

the PC monitor.

TEST THE CIRCUIT

 Output 10.00 should be energized when:

I-01 and I-02 are pressed.

or

I-03 and I-02 are pressed.

TASK

 Develop the logic given in Figure 2 and test its operation:

Output:

___.

Microprocessors Lab Session 16(a)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 65

EXERCISE
Program the PLC with the circuit below:

OBSERVATIONS

1. Output O1 when I1 and I4 are pressed ---------. (ON/OFF)

2. Output O1 when I4 and I3 are pressed ---------. (ON/OFF)

3. Output O1 when I5 and I6 are pressed ---------. (ON/OFF)

4. Output O1 when I6 is pressed ---------. (ON/OFF)

Microprocessors Lab Session 16(b)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 66

Lab Session 16(b)

Latching Circuits

OBJECT

To learn how to program a latching circuit in the PLC.

THEORY

A latching circuit provides a latched (ON) signal from a momentary pulse. When a

momentary pulse is transmitted, the circuit turns on and remains on even though the pulse

is momentary.

In Figure 1 a momentary push button, PB1, is wired to input I1. When the button is

pushed and then released, I1 turns ON, then OFF, providing only momentary energizing

for I1. Output O1 receives this momentary pulse, and energizes the contacts (O1) in

parallel with the momentary switch. These contacts maintain the connection after the

push button is released. Contact will be maintained until I2 is energized, breaking the

circuit to relay coil O1. The circuit will also reset to a power off condition if the PLC

loses power or the PLC is turned off.

This experiment will also introduce Nicknames and Reference Description.

Input 11 will be named as START.

Input 12 will be named as STOP.

PROCEDURE

Program the PLC with this circuit:

Microprocessors Lab Session 16(b)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 67

1. To execute CX-programmer, do the following steps:

 Click the START and go to All Programs.

 Select the folder Omron then the folder CX-Programmer.

 Click on CX-Programmer to start.

2. To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.

A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default – NewPLC1).

Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.

Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4

different windows:

 Ladder design window

 Project work space

 Output Window Error on Compiling

 Watch window I/O Monitor

Ladder Design Window:

1. Develop the given ladder logic in Figure 1 in this window by following these

steps:

 Place a new contact by clicking on it from toolbar and then clicking on ladder

design window at the desired location.

 Write 0.00 in Edit contact and press OK then write I1 in Edit comment field and

press OK.

 Now Place a new closed contact by clicking on it from toolbar and then clicking

on ladder design window at the right of I1.

 Write 0.01 in Edit contact and press OK then write I2 in Edit comment field and

press OK.

 Place a new coil by clicking on it from toolbar and then clicking on ladder design

window at the right of I2.

 Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and

press OK.

 Place a vertical wire connection in between I1 and I2 for connecting I3 in parallel

of I1.

 Place another new contact by clicking on it from toolbar and then clicking on

ladder design window at the bottom of I1.

Microprocessors Lab Session 16(b)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 68

 Write 0.02 in Edit contact and press OK then write I3 in Edit comment field and

press OK.

2. Compile this program by clicking on Program Menu and by selecting Compile

option. Another window appears with number on errors and warning message.

3. Now change PLC mode to online from PLC menu and selecting Work online OR

by pressing Work On-line button from toolbar. A confirmation dialogue is

displayed; select the Yes pushbutton to connect.

4. Select the Download button from the toolbar. The Download Options dialogue is

displayed.

5. Set the Programs field and select the OK pushbutton.

6. Deselect the Work Online option. Now you can observe the operation of PLC on

the PC monitor.

 TEST THE CIRCUIT

 When SW1 is pressed, enabling I1, the indicator for O1 will illuminate as well.

O1 will remain on even after SW1 is no longer pressed.

 When SW2 is pressed, O1 should turn off.

 If the PLC power is turned off, the circuit will RESET when power is turned back

on.

EXERCISE

Program the PLC with the circuit below:

OBSERVATIONS

1. Output O1 when I1 is pressed. --------- (ON/OFF)

2. Output O1 when I3 is pressed and released. --------- (ON/OFF)

3. Output O1 when I2 is pressed. --------- (ON/OFF)

4. Output O1 when I2 and I3 both are pressed --------- (ON/OFF)

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 69

Lab Session 16(c)

Timer Circuits

OBJECT

To learn how to program a Timer circuit in the PLC.

THEORY

The internal PLC timer consists of an enabling input, a reset input, and a timer preset

value.

The figure shows the basic timer function in a logic circuit.

This circuit delays power to O1 until a preset time has elapsed. The Set Value sets the

length of the time delay in multiple of 0.1 seconds. In the above figure, the constant value

of 40 will result in a 4 seconds time delay between the time I1 is energized and O1

output.

PROCEDURE

Program the PLC with this circuit:

1. To execute CX-programmer, do the following steps:

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 70

 Click the START and go to All Programs.

 Select the folder Omron then the folder CX-Programmer.

 Click on CX-Programmer to start.

2. To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.

A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default – NewPLC1).

Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.

Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4

different windows:

 Ladder design window

 Project work space

 Output Window Error on Compiling

 Watch window I/O Monitor

Ladder Design Window:

1. Develop the given ladder logic in Figure 1 in this window by following these

steps:

 Place a new contact by clicking on it from toolbar and then clicking on ladder

design window at the desired location.

 Write 0.00 in Edit contact and press OK then write I1 in Edit comment field and

press OK.

 Now Place a new PLC instruction by clicking on it from toolbar and then clicking

on ladder design window at the right of I1.

 Write TIM 001 #40 in Edit Instruction and press OK then write Timer1 in Edit

comment field and press OK.

 Place another new contact by clicking on it from toolbar and then clicking on

ladder design window just below I1 in the next rung.

 Write TIM001 in Edit contact and press OK then write Timer1 in Edit comment

field and press OK.

 Place a new coil by clicking on it from toolbar and then clicking on ladder design

window at the right of Timer1.

 Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and

press OK.

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 71

2. Compile this program by clicking on Program Menu and by selecting Compile

option. Another window appears with number on errors and warning message.

3. Now change PLC mode to online from PLC menu and selecting Work online OR

by pressing Work On-line button from toolbar. A confirmation dialogue is

displayed; select the Yes pushbutton to connect.

4. Select the Download button from the toolbar. The Download Options dialogue is

displayed.

5. Set the Programs field and select the OK pushbutton.

6. Deselect the Work Online option. Now you can observe the operation of PLC on

the PC monitor.

TEST THE PROGRAM

 Four seconds after I1 is closed O1 will be energized.

 The timer status will be displayed in real time on the program screen in either

online or monitor modes. Observe the time value shown on the program screen. If

the time is running, a number will increment on the timer. This reflects the timer‘s

internal count. After the set value has been reached, the timer stops to increment.

 Releasing I1 will reset the timer value to zero.

EXERCISE

Q: Design Ladder logic program for Priority determination design (Early Player Buzzer

First).

OPERATION:

The game buzzer control requirement:

1. After the Host has finished with question.

2. The 3 players will press the switch in front of them to fight to be first to

answer the question.

3. The buzzer will sound for 10 sec after any one of the players has touched the

switch.

4. The light indicator in front of each player will light-up and only reset by the

Host switch.

I/O ASSIGNMENT:

Input Device Output Device

00000 PB1 01000 Buzzer

00001 PB2 01001 Player1 light

00002 PB3 01002 Player2 light

00003 RST (reset) 01003 Player3 light

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 72

LADDER LOGIC:

Microprocessors Lab Session 16(c)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 73

OBSERVATIONS

__

__

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 74

Lab Session 16(d)

Counter Circuits

OBJECT

To learn how to program a counter circuit in the PLC.

THEORY
The basic counter within the PLC consists of the input the counter function, the counter

reset input, and the counter preset. Each part of the counter performs a very specific

function. Each part of the counter performs a very specific function. The counter must

first be enabled before it can count events. To enable the counter, the reset element must

be open initially. If the reset element is open, then closing the count element causes the

accumulated value of a counter to increase by 1.For example, if the accumulated value of

a counter was 7, the value would increase to 8 with the closing of the count element.

The accumulated value increases by 1each time the count element goes from open to

close. If the count element remain in the close position, the accumulated value increases

by only 1.The count element must then be opened and again closed in order to increases

the value by a count of 1.When the accumulated value of a counter is equal to a PRESET

value, the counter energizes the output relay coil.

Any time the RESET element is closed, the counter is RESET regardless of whether or

not the count contact is close. If the counter is RESET, the accumulated value of the

counter is RESET, to 0000 and the counter output is de-energized. This causes the output

relay coil and its associated contacts to change back to their original status-the normally

closed contacts close. These conditions will remain as long as the RESET element is

close. When the RESET element is again opened, the counter is ready to begin counting

all over again.

PROCEDURE

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 75

Program the PLC with this circuit:

1. To execute CX-programmer, do the following steps:

 Click the START and go to All Programs.

 Select the folder Omron then the folder CX-Programmer.

 Click on CX-Programmer to start.

2. To start a new project, perform the following steps:

Step 1: Create a New Project

Select <File> -- <New> OR click on the New Project icon.

A project window will appear, with a <Change PLC> window.

Step 2: Select your Settings

Assign a name for the PLC at the Device Name (Default – NewPLC1).

Select the appropriate PLC model (CPM2* for this PLC) by clicking on Device Type.

Set the driver to the COM port (in Network Type Settings) connected from PC to

PLC.

After the setup has been done, the programming screens will appear. There are 4

different windows:

 Ladder design window

 Project work space

 Output Window Error on Compiling

 Watch window I/O Monitor

Ladder Design Window:

1. Develop the given ladder logic in Figure 1 in this window by following these

steps:

 Place a new contact by clicking on it from toolbar and then clicking on ladder

design window at the desired location.

 Write 0.00 in Edit contact and press OK then write I1 in Edit comment field and

press OK.

 Now Place a new PLC instruction by clicking on it from toolbar and then clicking

on ladder design window at the right of I1.

 Write CNT 010 #8 in Edit Instruction and press OK then write Counter1 in Edit

comment field and press OK.

 Place another new contact by clicking on it from toolbar and then clicking on

ladder design window just below I1.

 Write 0.01 in Edit contact and press OK then write I2 in Edit comment field and

press OK.

 Place third new contact by clicking on it from toolbar and then clicking on ladder

design window just below I2 in the next rung.

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 76

 Write CNT010 in Edit contact and press OK then write Counter1 in Edit comment

field and press OK.

 Place a new coil by clicking on it from toolbar and then clicking on ladder design

window at the right of Counter1.

 Write 10.00 in Edit contact and press OK then write O1 in Edit comment field and

press OK.

2. Compile this program by clicking on Program Menu and by selecting Compile

option. Another window appears with number on errors and warning message.

3. Now change PLC mode to online from PLC menu and selecting Work online OR

by pressing Work On-line button from toolbar. A confirmation dialogue is

displayed; select the Yes pushbutton to connect.

4. Select the Download button from the toolbar. The Download Options dialogue is

displayed.

5. Set the Programs field and select the OK pushbutton.

6. Deselect the Work Online option. Now you can observe the operation of PLC on

the PC monitor.

TEST THE PROGRAM

 Press I1 eight times. The accumulated count will appear on the counter. At the

tenth switch closure O1 will energize.

 Press I2 to reset the counter and repeat the experiment.

EXERCISE

Q: Design Ladder Logic Program for Packaging Line Control:

OPERATION:
When PB1 (START Push Button) is pressed, the box conveyor moves. Upon detection of box

present, the box conveyor stops and the Apple conveyor starts. Part sensor will count for 10

apples. Apple conveyor stops and box conveyor starts again. Counter will be reset and

operation repeats until PB2 (STOP Push Button) is pressed.

I/O ASSIGNMENT:

Input Devices Output Devices

00000 START Push Button (PB1) 01000 Apple Conveyor

00001 STOP Push Button (PB2) 01001 Box Conveyor

00002 Part Present (SE1)

00003 Box Present (SE2)

LADDER LOGIC:

Microprocessors Lab Session 16(d)
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 77

OBSERVATIONS

__

 78

CIRCUIT DIAGRAM

(Lab session 15)

