

Practical Workbook

CS-430

Microprocessor Programming &

Interfacing

(BM / EE / EL / TC)

Dept. of Computer & Information Systems Engineering

NED University of Engineering & Technology

Name : _____________________________

Year : __________ Batch: ____________

Roll No. : _____________________________

Group No. : ____________________________

Department : ____________________________

INTRODUCTION

Microprocessors play a vital role in the design of digital systems. They are found in a wide range of

application such as process control, communication systems, digital instruments and consumer

products. Before embedding microprocessor in any system, profound knowledge and full

understanding of the architecture and the instruction set of that microprocessor is imperative.

This workbook is divided into three sections. The first section deals with understanding the

architecture of a basic machine having a von Neumann instruction set architecture. In these labs,

students will use PRIMA VIRTUAL MACHINE, which allows them to visualize the flow of

instructions as it happens in a real computing environment.

The second part deals with Assembly Language programming of 8088 microprocessor, which helps

the students to have a good knowledge of programming of a specific architecture, as well as working

in the environments like DEBUG and MASM (Microsoft Macro Assembler).

The last part deals with hardware implementation and interfacing of the 8088 microprocessor with

various I/O devices. These labs will assist the students to design and implement a basic

microprocessor based system.

Practical Workbook

Microprocessor Programming &

Interfacing

CONTENTS

Lab Session

No.

Objective

Page

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Understanding and Simulating von Neumann IAS Computer using PRIMA VIRTUAL

MACHINE.

Simulating Instruction Set of von Neumann Machine using PRIMA.

Implementing Conditional Branch Instructions of von Neumann Machine using PRIMA.

Executing Self Modifying Instructions on von Neumann Machine using PRIMA.

Exploring the Instruction Set Architecture (ISA) of 8088 Microprocessor.

Programming in Assembly Language Programming of 8088 Microprocessor.

Running an Assembly Language Program of 8088 Microprocessor using the DEBUG tool.

Calling a Subroutine from another Assembly File as a near Procedure using MASM tool.

Executing Data Transfer and Stack Operation Instructions.

Implementing Logic Group of Instructions.

Simulating Transfer of Control Instructions.

Implementing Arithmetic Group of Instructions.

De-multiplexing of Address/Data Bus of 8088 Microprocessor.

Creating Input/Output Device Select Pulses using 8088 Microprocessor.

Interfacing 8255 PPI to the 8088 Microprocessor

1

9

14

17

19

25

32

39

43

47

52

56

62

64

66

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 1

 Lab Session 01

OBJECTIVE

Understanding & simulating von Neumann IAS Computer using PRIMA VIRTUAL

MACHINE

THEORY

THE VON NEUMANN ARCHITECTURE

In 1947 von Neumann designed the first stored program computer at the Institute of

Advanced Studies (IAS), Princeton. This machine is therefore regarded as IAS computer.

Prior to the notion of stored program computing, machines were programmed by re-arranging

physical wiring and every time a new computation was required of a computer, it had to be re-

wired again. A stored program computer stores instructions in memory in the same fashion as

it stores data for processing. The idea of stored program computing revolutionized the whole

computing paradigm and computer architecture proposed by von Neumann became the

foundation of every computing machinery to come with no exception of the today’s state-of-

the-art modern computers.

The IAS computer consists of three major subsystems: instruction processing unit, arithmetic

unit, and memory. Instructions and data share the same address space and hence instructions

can be processed as data. The word read from the memory is routed to either Instruction

Processing Unit or the Arithmetic Unit, depending upon whether an instruction or a datum is

being fetched.

THE VON NEUMANN INSTRUCTION SET ARCHITECTURE (ISA)

The von Neumann ISA is quite simple, having only 21 instructions. In fact, this ISA could be

called an early reduced instruction set computer (RISC) processor. As with any ISA, there are

three components: addresses, data types, and operations.

Addresses

The addresses of an ISA establish the architectural style - the organization of memory and

how operands are referenced and results are stored. Being a simple ISA, there are only two

memories addressed: the main memory and the accumulator. The main memory of the von

Neumann ISA is random access and is equivalent to the dynamic random-access memory

(DRAM) found in today's computers. The technology of the 1940s restricted random-access

memory (RAM) to very small sizes; thus the memory is addressed by a 12-bit direct address

allocated to the 20-bit instructions. Local storage in the processor is a single accumulator. An

accumulator register receives results from the ALU that has two inputs, a datum from

memory, and the datum held in the accumulator. Thus only a memory address is needed in the

instruction as the accumulator is implicitly addressed.

Data Types

The von Neumann ISA has two data types: fractions and instructions. Instructions are

considered to be a data type since the instructions can be operated on as data, a feature called

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 2

self-modifying code. Today, the use of self-modifying code is considered a bad programming

practice and thus many operating systems even don’t allow execution of such code.

Fractions

The 40-bit word is typed as a 2's complement fraction; the range is -1  f < +1:

Instructions

Two 20-bit instructions are allocated to the 40-bit memory word. An 8-bit operation code, or

op-code, and a 12-bit address are allocated to each of the instructions. Note that, with only 21

instructions, fewer op-code bits and more address bits could have been allocated. The direct

memory address is allocated to the 12 most significant bits (MSBs) of each instruction. The

address and the op-code pairs are referred to in terms of left and right:

Figure 1.1

Registers
A block diagram of the IAS computer is shown in the following figure. (I/O connections are

not shown).

The processor has seven registers that support the interpretation of the instructions fetched

from memory. Note that two of the registers are explicitly addressed by the instructions and

defined in the ISA (called architected registers) while the other six are not defined.

Figure 1.2

MQ: Multiplier Quotient

IR: Instruction Register

IBR: Instruction Buffer Register

MAR: Memory Address Register

MDR: Memory Data Register

39 0

Right Op-code

Left Op-code

Right Address

Left Address

7 8 19 20 27 28

ALU

Accumulator

MQ

IR

Program Counter

IBR

Memory

M

D

R

M

A

R

Control

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 3

The function of each of these registers is described in the following table:

Name Function

Architected (Programmer-Visible) Registers

Accumulator, AC, 40 bits This register holds one of the following:

1. the output of the ALU after an arithmetic operation

2. a datum loaded from memory

3. the most-significant digits of a product and

4. the divisor for division.

Multiplier Quotient

Register, MQ, 40 bits

This register holds one of the following:

1. a temporary data value such as the multiplier

2. the least-significant bits of the product as multiplication

proceeds and

3. the quotient from division.

Implemented (Programmer-Transparent) Registers

Program Counter, PC, 12

bits

Holds the pointer to memory. The PC contains the

Address of the instruction pair to be fetched next.

Instruction Buffer Register,

IBR, 40 bits

Holds the instruction pair when fetched from the

Memory.

Instruction Register, IR, 20

bits

Holds the active instruction while it is decoded in the

Control unit.

Memory Address Register,

MAR, 12 bits

Holds the memory address while the memory is

being read or written. The MAR receives

input from the program counter for an instruction

fetch and from the address field of an instruction for

a datum read or write.

Memory Data Register,

MDR, 40 bits

Holds the datum (instruction or data) for a memory

read or write cycle.

Operations

The operations of the von Neumann ISA are of three types:

 data transfer between the accumulator, multiplier quotient register, and memory

 ALU operations such as add, subtract, multiply, and divide

 Unconditional and conditional branch instructions that redirect program flow.

INTRODUCTION TO PRIMA- SIMULATOR FOR VON-NEUMANN COMPUTER

The screen shown in figure 1.3 appears when PRIMA simulator is run.

 The speed controller: You can control the speed of the animation with this scrollbar.

 The "clock" button: This button simulates a clock signal to the PRIMA. While the

animation is running, the applet will not react to user input.

 The "start" button: This button runs the program that is in the RAM. You first have to

load a program into the RAM to use this function. (See "the edit button"). Unlike the clock

button, this function has its own thread and user input will be processed while the

program runs.

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 4

 The "reset" button: Reset the PRIMA. The RAM will not be erased by this function, but

the PRIMA returns to the state it was in before the program was started.

 The "edit" button: You can invoke the "Edit RAM" window with this button. This

window is used for loading program examples into the RAM and viewing the source code.

You can also write your own programs in this window. See "Edit RAM" for details on

using the Edit window.

 The "command" button: This button invokes the "Command" window. This window

shows the current command (instruction) that is being executed by the PRIMA and

explains what it does. For details, see "The Command window".

 The radix menu: You can switch between number representations with radix 10(decimal)

or radix16 (Hexadecimal) with this menu.

Figure 1.3

THE PRIMA WINDOWS

The main window: In this window, you see the building blocks of the PRIMA and the

control panel at the bottom of the window. You see an image of the PRIMA, explaining the

different elements:

Building Blocks of PRIMA:

1. RAM Block: The left field contains the current address. The field with the red border

contains the Value i.e. contents at the current address.

2. Upper MULTIPLEXER Block: The Multiplexer switches between the PC and Address

Register.

3. ADDER Block: The adder adds two numbers as its inputs. Here it is used to increment the

PC.

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 5

4. Lower MULTIPLEXER Block: The Multiplexer switches between the adder and

Address Register.

5. PROGRAM COUNTER Block: The Program Counter stores the address of next

instruction to be fetched.

6. MPC Block: The MPC stores the mode of PRIMA which are: 1= apply 0= load

7. CLOCK Block: The Clock generates the clock signals for PRIMA.

8. PC SELECT Block: The PC Select block contains the logic to handle branches.

9. BR Block: It is the command register which contains the command that is applied in the

apply mode.

10. AR Block: It is the Address Register which contains the address that is applied in the

apply mode.

11. ALU Block: The ALU does the arithmetic and logical operations. The field at the centre

specifies the current operation being performed in ALU.

12. OVERFLOW Block: It stores the Overflow flag.

13. AKKU Block: It is the accumulator which stores the output of ALU for further use.

EDIT RAM

Here is a screenshot of the "Edit RAM" window:

Following are the main components:

The control panel

 The "load" button: You can load a program into the RAM with this button. To do this

you have to choose a program from the choice or type in your own program.

 The "open" button: You can view the program of your choice with this button. First you

have to choose a program from the menu. This function does not load the program into the

RAM. You still have to use the load button to do this.

 The "new" button: If you want to write your own program, use this button. The text

editor will be cleared and you can type in your program. The commands are given in

decimal numbers, followed by the address on which they should act. Command list will be

studied in the next lab. The commands and addresses have to be separated by at least one

space. After typing in the program, you can load it into the RAM with the load button. To

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 6

verify your code, you can use the show button. This button will show the code in the RAM

and comment it.

 The "show" button: This button shows the current program in the RAM. If the programs

save their results in variables, you can use this function to see the values of the variables

after program execution.

 The program examples menu: You can choose one of the program examples here. To

view or load the program, you have to use the open or the load button.

 The "Command" window: This window shows the current command that is being

executed by the PRIMA, and explains what it does.

PROCEDURE

1. Open HotJava Browser application first, and then load INDEX.html file present in the

PRIMA folder. The complete simulator is available locally and no internet connection is

required.

2. By default, addition operation is loaded into the simulator. So just run the simulator from

the main screen by pressing START.

3. Before starting, note down that in the list box, DEC is loaded which implies that all the

register contents, addresses and memory contents will be displayed in decimal.

4. Carefully note down the first simulation and fill in the observation chart # 1 after stopping

simulation.

5. Press RESET button. Then Change the DEC to HEX in list box, which implies that all the

register contents, addresses and memory contents will now be displayed in hexadecimal.

6. Now carefully note down the second simulation and fill in observation chart # 2 after

stopping simulation

OBSERVATIONS

(1) SIMULATION # 1 (In Decimal): (for first 6 clock cycles)

PRIMA BUILDING

BLOCKS

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

1.RAM Contents

2.Address Register (AR)

3. Command Register(BR)

4.Program Counter(PC)

5.Clock(CLK)

6.ALU operation

7.Overflow flag

8.Accumulator(AKKU)

9.MPC(Mode of PRIMA)

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 7

(1) SIMULATION # 1 (In Hexadecimal): (for first 6 clock cycles)

PRIMA BUILDING BLOCKS Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

1.RAM Contents

2.Address Register (AR)

3. Command Register(BR)

4.Program Counter(PC)

5.Clock(CLK)

6.ALU operation

7.Overflow flag

8.Accumulator(AKKU)

9.MPC(Mode of PRIMA)

EXERCISES

1. From the GUI (Graphical User Interface) of PRIMA, Identify the three major subsystems

 of Von Neumann Computer.

2. One of the unique points of the von Neumann architecture is that both instructions and data

 share the same address space. Justify this statement from PRIMA simulation.

3. Name the seven registers of von Neumann processor that support the interpretation of the

 instructions fetched from memory.

a. _________________________________

b. _________________________________

c. _________________________________

d. _________________________________

e. _________________________________

f. _________________________________

g. _________________________________

Microprocessor Programming and Interfacing Lab Session 01
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 8

4. Which of the IAS registers contains the output of ALU after completion of an arithmetic

 operation? What is the width of this register in bits? Verify from PRIMA simulator

 interface.

5. Specify whether the instructions of von Neumann computer are processed as data. Justify

 from PRIMA simulation and output of loaded program.

6. Which register holds the address of memory to be read or written? What is the width of this

 register in bits?

7. Which register holds the instruction pair when fetched from a 40-bit word sized memory?

 Load the Program Addition and verify your answer from the PRIMA simulator GUI based

 Animation.

8. Which number format is used to represent negative numbers in von Neumann machine?

Microprocessor Programming and Interfacing Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 9

 Lab Session 02

OBJECTIVE

Simulating Instruction Set of von Neumann Machine using PRIMA VIRTUAL

MACHINE (PVM)

THEORY

All instructions are constructed from two sequential bytes. The first byte is the opcode (i.e. the
operation to be performed), and the second is the address of the operand upon which the
operation is to be performed.
The overflow flag OV can be reset before applying the instruction by adding a "*" to
mnemonic of the instruction.

Mnemonic Decimal Binary Action

ADD 0 00000000 Accu + RAM[Address]  Accu

ADD* 32 00100000

SUB 1 00000001 Accu - RAM[Address]  Accu

SUB* 33 00100001

AD1 10 00001010 Accu + 1  Accu

AD1* 42 00101010

SB1 12 00001100 Accu - 1  Accu

SB1* 44 00101100

OR 2 00000010 Accu OR RAM[Address] Accu

OR* 34 00100010

AND 3 00000011 Accu AND RAM[Address] Accu

AND* 35 00100011

XOR 4 00000100 Accu XOR RAM[Address] Accu

XOR* 36 00100100

NOP 8 00001000 Accu  Accu (Does nothing)

NOP* 40 00101000

LD 9 00001001 RAM[Address]  Accu

LD* 41 00101001

LDI 11 00001011 RAM[Address] + 1  Accu

LDI* 43 00101011

LD0 14 00001110 0  Accu

LD0* 46 00101110

LD1 15 00001111 1  Accu

LD1* 47 00101111

Microprocessor Programming and Interfacing Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 10

ST 72 01001000 Accu  RAM[Address]

ST* 104 01101000

SL 5 00000101
Accu[i]  Accu[i+1], (0 <= i < 8); 0  Accu[0] "LEFT

SHIFT"

SL* 37 00100101

SR 6 00000110
Accu[i]  Accu[i-1], (0 <= i < 8); 0  Accu[8] "RIGHT

SHIFT"

SR* 38 00100110

RR 7 00000111
Accu[i]  Accu[i-1], (0 < i <= 8); Accu[0]  Accu[8]

"ROATE RIGHT"

RR* 39 00100111

BU 128 1X0XXXX0 Address  PC

BU* 160 1X1XXXX0

BZ 131 10000011 IF Accu=0 THEN Address  PC

BZ* 163 10100011

BCY 133 10000101 IF Accu[8]=1 THEN Address  PC

BCY* 165 10100101

BEV 193 11000001 IF Accu[0]=1 THEN Address  PC

BEV* 225 11100001

BLS 137 10001001 IF Accu[7]=1 THEN Address  PC

BLS* 169 10101001

BOV Exists only as BOV*

BOV* 161 10100001 IF OV=1 THEN Address  PC

BSW 145 10010001 IF SW=1 THEN Address  PC

BSW* 177 10110001

PROCEDURE

1. Open HotJava Browser application first, and then load INDEX.html file present in the

PRIMA folder.
2. After the applet starts, you will see the block diagram of the PVM. There are 7 UI

elements at the bottom of the screen.
3. Press the edit button. A window will pop up called "Edit RAM”.
4. Take a look at the example program "addition". This is the default choice.
5. Press the open button to look at the program. After a short delay, the program code and its

explanation in the window will appear.
6. Load the program into the RAM by pressing the “load “button.
7. Press the start button in the main window. The program will start and you will see an

animation of the data flow.
8. You can control the speed of the animation with the “speed control”.
9. Pressing the command button will pop up a window that shows the currently executing

instruction.

Microprocessor Programming and Interfacing Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 11

Fig. 2.1

OBSERVATIONS
(For program given in figure 2.1)
1. The program runs in an infinite loop.
2. You can recognize this by the repeating values and addresses in the RAM. Now we can

stop the program and view the results in the "Edit RAM" window. We expect to see the
result of the addition 12 + 7 at the RAM address 8.

3. To show the contents of the RAM, press the show button.
4. Check the value at address 8. As expected, the value is 19.
5. To write your own program, press the "new" button. You can type in your program now.

The instructions must be decimal numbers with a valid “Opcode”. The addresses must be
smaller than 256.

Microprocessor Programming and Interfacing Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 12

EXERCISES

1. Write a program to add two numbers. Please type in the following program:
 9 8 0 9 72 10 128 6 14 2

 Description of the program logic is as follows:
a. Here 9 is opcode of LD instruction.
b. Number 14 is stored in accumulator at $8. ($8=14)
c. 0 is the opcode of ADD instruction.
d. Number 2 is stored in accumulator at $9. ($9=2)
e. It then saves (72), the value of the accumulator at address $10.

Program goes in an infinite loop .We can load the program into the RAM by pressing the
load button. Look at the contents of the RAM by pressing the show button. We execute
the program by pressing the start button. Once the program goes into an infinite loop, we
can stop the program and view the contents of the RAM. As expected, the address 10
contains the value 16.

Microprocessor Programming and Interfacing Lab Session 02
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 13

Write down the source code and corresponding flow chart of the program here:

 Program Flow Chart

Microprocessor Programming and Interfacing Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

14

 Lab Session 03

OBJECTIVE

Implementing Conditional Branch Instructions of von Neumann Machine using PRIMA

THEORY

Following sequence of instructions illustrates use of conditional branch in von-Neumann

machine:

OPCODE/ADDRESS ACTION PERFORMED
9: opcode LD RAM [Address]  AKKU

10: Address

1: opcode SUB AKKU - RAM [Address]  AKKU

11: Address

131: opcode BZ IF AKKU = 0 THEN Address  PC

8: Address

128: opcode BU Address  PC

2: Address

128: opcode BU Address  PC

8: Address

2: opcode Operand

1: Address Operand

PROCEDURE

1. Execute PVM as described in the previous lab sessions.

2. Press edit button to "Edit RAM” window.

3. Press the new button and start writing your program in this new window. (See figure 3.1)

Figure 3.1

9

10

1

11

131

8

128

2

128

8

2

1

Microprocessor Programming and Interfacing Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

15

4. Load the program into RAM by pressing the load button.

5. Press the start button in the main window. The program will start and you will see an

animation of the data flow.

6. You can control the speed of the animation with the “speed control”.
7. Pressing the command button will pop up a window that shows the currently executing

instruction.

8. The program runs in an infinite loop.

9. You can recognize this by the repeating values and addresses in the RAM. Now we can

stop the program and view the results in the "Edit RAM" window.

10. To show the contents of the RAM, press the show button.

11. After stopping the program, go to the main PRIMA applet screen.

12. Note down the simulation output on PRIMA screen in the given observation table.

OBSERVATIONS

PRIMA BUILDING

BLOCKS

READINGS

1.RAM Contents

2.Address Register (AR)

3. Command Register(BR)

4.Program Counter(PC)

5.Clock(CLK)

6.ALU operation

7.Overflow flag

8.Accumulator(AKKU)

9.MPC(Mode of PRIMA)

EXERCISES

1. Which specific instruction enables you to perform Indexed addressing in von Neumann

 IAS Computer? What is the opcode of that instruction?

2. Do we need a RESET in von Neumann IAS computer, when we execute programs? Verify

 from PVM simulator and give reason for your answer.

Microprocessor Programming and Interfacing Lab Session 03
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

16

3. Which Conditional Branch Instruction of IAS instruction set was used in the given

 program? Write down its opcode in binary.

4. Suppose that during execution of conditional branch instruction, condition is found to be

 TRUE also known as a taken branch. Which register will hold the branch address when

 branch or transfer of control occurs? Verify your answer from PVM Simulator graphical

 user interface.

 Register: ____________________________

 Contents of Register (Before Branch): _____________________________

 Contents of Register (After Branch): _____________________________

 5. At which memory address, the control will be transferred, if the condition is found to be

 TRUE, during execution of Conditional Branch Instruction in the given program?

6. At which memory address, the control will be transferred, if the condition is found to be

 FALSE, also known as not taken branch during execution of Conditional Branch

 instruction in the given program?

7. Which specific register of von Neumann IAS computer contains the address of the next

 Instruction in a given program sequence? What is the size of this register in bits?

8. Write down the opcode of the Unconditional Branch instruction of von Neumann IAS

 Computer “BU”. How BU command works?

Microprocessor Programming and Interfacing Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 17

 Lab Session 04

OBJECTIVE

Executing Self-Modifying Instructions on von Neumann Machine using PRIMA

THEORY

Following sequence of instructions illustrates use of self-modifying instructions in von-

Neumann machine:

OPCODE/ADDRESS ACTION PERFORMED
9: opcode LD RAM [Address]  AKKU

10: Address

0: opcode ADD AKKU + RAM [Address]  AKKU

11: Address

72: opcode ST AKKU  RAM [Address]

2: Address

128: opcode BU Address  PC

2: Address

128: opcode BU Address  PC

8: Address

0: opcode Operand

1: Address Operand

PROCEDURE

1. Execute PVM as described in the previous lab sessions.

2. Press edit button to "Edit RAM” window.

3. Press the new button and start writing your program in this new window. (See figure 4.1)

Figure 4.1

9

10

0

11

72

2

128

2

128

8

0

1

Microprocessor Programming and Interfacing Lab Session 04
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 18

4. Load the program into RAM by pressing the load button.

5. Press the start button in the main window. The program will start and you will see an

animation of the data flow.

6. You can control the speed of the animation with the “speed control”.

7. Pressing the command button will pop up a window that shows the currently executing

instruction.

8. The program runs in an infinite loop.

9. You can recognize this by the repeating values and addresses in the RAM. Now we can

stop the program and view the results in the "Edit RAM" window.

10. To show the contents of the RAM, press the show button.

11. After stopping the program, go to the main PRIMA applet screen.

12. Note down the simulation output on PRIMA screen in the given observation table.

OBSERVATIONS

PRIMA BUILDING

BLOCKS

READINGS

1.RAM Contents

2.Address Register (AR)

3. Command Register(BR)

4.Program Counter(PC)

5.Clock(CLK)

6.ALU operation

7.Overflow flag

8.Accumulator(AKKU)

9.MPC(Mode of PRIMA)

EXERCISES

1. Which specific instruction enables you to perform Indexed addressing in von Neumann

 IAS Computer? What is the opcode of that instruction?

2. Which Unconditional Branch Instruction of IAS instruction set was used in the given

 program? Write down its opcode in binary.

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 19

Lab Session 05
OBJECTIVE

Exploring the Instruction Set Architecture (ISA) of 8088 microprocessor

THEORY

INSTRUCTION SET ARCHITECTURE

The collection of all the operations possible in a machine’s language is its instruction set. The

programmer’s view is composed of the machine / assembly language instruction set of the machine, along

with the machine resources that can be managed with those instructions. This collection of instructions

and resources is sometimes referred to as instruction set architecture (ISA) of the machine. The ISA

includes the instruction set, the machine’s memory, and all the programmer-accessible registers in the

CPU and elsewhere in the machine.

ISA of 8088 microprocessor-based computer

 The Processor

The processor is partitioned into two logical units: an Execution Unit (EU) and a Bus Interface Unit

(BIU). The role of the EU is to execute instructions, whereas the BIU delivers instructions and data to

the EU. The EU contains ALU, a control unit and a number of registers. These features provide for

execution of instructions and arithmetic and logic operations. The BIU controls the buses that transfer

data to the EU, to memory, and to I/O devices. It also manages segment registers and instruction

queue. Segment registers control memory addressing and will be described shortly.

Instructions fetched from main memory by BIU are placed in an instruction queue, which varies in

size depending on the processor. This feature enables fetching of instructions in parallel with

instruction execution and hence results in speeding up execution.

 Memory Addressing

Depending on the machine, a processor can access one or more bytes from memory at a time. The

number of bytes accessed simultaneously from main memory is called word length of machine.

Generally, all machines are byte-addressable i.e.; every byte stored in memory has a unique address.

However, word length of a machine is typically some integral multiple of a byte. Therefore, the

address of a word must be the address of one of its constituting bytes. In this regard, one of the

following methods of addressing may be used.

Big Endian: The word address is taken as the address of the most significant byte in the word.

MIPS, Apple Macintosh are some of the machines in this class.

 Little Endian: Here the word address is taken as the address of the least significant byte in the

word. Intel’s machines are of this type. Consider for example, storing hex number 245A in main

memory. The least significant byte 5A will be stored in low memory address and most significant byte

24 will be stored in high memory address.

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 20

Address Contents

1002 5A

1003 24

 Segments

A segment is an area defined in a program that begins on a paragraph boundary, that is, an address

evenly divisible by 16, or hex 10. To address an item in a segment, the starting address of the segment

is provided by a special purpose segment register. The three major segments in a program are the

following.

Code Segment: It contains the machine instructions that are to execute.

Data Segment: This contains a program’s defined data and constants.

 Stack Segment: This contains any data and addresses that you need to save temporarily or for use

by your own “called” subroutines.

 Segment Boundaries

A segment register contains the starting address of a segment. Segment registers associated with code,

data and stack segments are respectively CS, DS and SS registers. Other segment registers are the ES

(extra segment) and, on the 80386 and later processors, the FS and GS registers, which have

specialized uses.

A segment begins on a paragraph boundary, which is an address evenly divisible by hex 10. Consider

a code segment that begins at an address 038E0H. Because in this and all other cases the rightmost

hex digit is zero, the computer designers decided that it would be unnecessary to store the zero digit in

the segment register Thus 038E0H is stored as 038E, with the rightmost zero understood.

 Segment Offsets

Within a program, all items (instructions and data) are addressed relative to the starting address of the

segment in which the items appear. The distance in bytes from the segment’s starting address to

another location within the segment is expressed as an offset (or displacement). A 2-byte (16-bit)

offset can range from 0000H through FFFFH, or zero through 65, 535. To reference any memory

location in a segment, the processor combines the segment address in a segment register with an offset

value.

Consider for example that a data segment begins at location 038E0H. The DS register contains the

segment address of the data segment, 038EH, and an instruction references a location with an offset of

0032H bytes within the data segment. The actual memory address of the byte referenced by the

instruction is therefore:

DS Segment Address: 038E0H

Offset: +0032H

Actual Address: 03912H

A program contains one or more segments, which may begin almost anywhere in memory, may vary

in size, and may be in any sequence.

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 21

 Registers

The processor’s registers are used to control instruction execution, to handle addressing of

memory, and to provide arithmetic capability. The registers are addressable by name, such as CS,

DS, and SS. Bits in a register are conventionally numbered from right to left, beginning with 0, as

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Some of the registers of interest are as follows.

 Pointer Registers

Instruction Pointer (IP) Register: The 16-bit IP register contains the offset address of the

next instruction that is to execute. The IP is associated with the CS register in that the IP

indicates the current instruction within the currently executing code segment.

 Stack Pointer (SP) Register: The 16-bit SP register provides an offset, which when

associated with the SS register, refers to the current word being processed in the stack. The

80386 and later processors have an extended 32-bit stack pointer, the ESP register.

 Base Pointer (BP) Register: The 16-bit BP facilitates referencing parameters, which are

data and addresses that a program passes via the stack. The processor combines the address in

SS register with the offset in the BP. The 80386 and later processors have an extended 32-bit

BP called EBP register.

 General-Purpose Registers

  AX Register: The AX register, the accumulator, is used for operations involving I/O and

most arithmetic. Some instructions generate more efficient code if they reference the AX

register rather than other registers.

Like other general-purpose registers, it is a 16-bit register that can be accessed byte-wise. The

high byte is AH and low byte is AL.

 AX

AH AL

8 bits 8 bits

The 80386 and later processors support all the general-purpose registers, plus 32-bit extended

versions of them: EAX, EBX, ECX, and EDX.

 BX Register: The BX is known as base register since it is the only general-purpose register

that can be used as an index to extended addressing.

 CX Register: The CX is known as count register. It may contain a value to control the

number of times a loop is repeated or a value to shift bits left or right.

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 22

 DX Register: The DX is also known as data register. Some I/O operations require its use,

and multiply and divide operations that involve large values assume the use of the DX and

AX together as pair.

  Index Registers

 SI Register: The 16-bit source index register is required for some string (character)

operations. In this context, the SI is associated with the DS register. The 80386 and later

processors support a 32-bit extended register, the ESI.

 DI Register: The 16-bit destination index register is also required for some string

(character) operations. In this context, the DI is associated with the ES register. The 80386

and later processors support a 32-bit extended register, the EDI.

 Flag Register

Nine of the 16 bits of the flag register are common to all 8086- family processors to indicate

the current status of the processor and the results of processing. Many instructions involving

comparisons and arithmetic change the status of the flags, which some instructions may test to

determine subsequent action.

The following briefly describes the common flag bits:

 OF (overflow): Indicates overflow resulting from some arithmetic operation.

 DF (direction): Determines left or right direction for moving or comparing string

(character) data.

 IF (interrupt): Indicates that all external interrupts, such as keyboard entry, are to be

processed or ignored.

 TF (trap): Permits operation of the processor in single-step mode. Debugger programs

such as DEBUG set the trap flag so that you can step through execution in a single-

instruction at a time to examine the effects on registers and memory.

 SF (sign): Contains the resulting sign of an arithmetic operation (0 = positive and 1 =

negative).

 ZF (zero): Indicates the result of an arithmetic or comparison operation (0 = nonzero and 1

= zero result)

 AF (auxiliary carry):Contains a carry out of bit 3 on 8–bit data, for specialized arithmetic.

 PF (parity): Indicates even or odd parity of a low-order (rightmost) 8-bit data operation.

 CF (carry): Contains carry from a high-order (leftmost) bit following an arithmetic

operation; also, contains the contents of the last bit of a shift or rotate operation.

 OF DF IF TF SF ZF AF PF CF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 The 80286 and later processors have a 32-bit extended flags register known as Eflags.

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 23

EXERCISES

a) Show how the following values are stored in memory beginning at address 7123.

i) 1234H

Address Contents

7123

7124

ii) 01DB5CH

Address Contents

7123

7124

7125

b) What are (i) the three kinds of segments, (ii) their maximum size, and (iii) the address boundary

on which they begin?

__

__

__

__

__

c) Explain which registers are used for the following purposes: (i) addressing segments; (ii) offset

address of an instruction that is to execute; (iii) addition and subtraction; (iv) multiplication and

division; (v) counting for looping; (vi) indication of a zero result.

__

__

__

__

__

d) Show the EDX register and the size and position of the DH, DL, and DX within it.

__

Microprocessor Programming and Interfacing Lab Session 05
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 24

e) During execution of a program, the CS contains 6C3AH, the SS contains 6C62H, the IP contains

42H, and the SP contains 36H. Calculate the addresses of (i) the instruction to execute and (ii) the

top (current location) of the stack.

__

__

__

__

__

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 25

Lab Session 06

OBJECTIVE

Programming in Assembly Language Programming of 8088 microprocessor

THEORY

ASSEMBLY LANGUAGE SYNTAX

 name operation operand (s) comment

Assembly language statement is classified in two types

Instruction

 Assembler translates into machine code.
Example:
 START: MOV CX, 5 ; initialize counter
Comparing with the syntax of the Assembly statement, name field consists of the label
START:. The operation is MOV, operands are CX and 5 and the comment is ;initialize
counter.

Assembler Directive
 Instructs the assembler to perform some specific task, and are not converted into
machine code.
Example:
 MAIN PROC
MAIN is the name, and operation field contains PROC. This particular directive creates a
procedure called MAIN.

Name field

 Assembler translate name into memory addresses. It can be 31 characters long.

Operation field

 It contains symbolic operation code (opcode). The assembler translates symbolic
opcode into machine language opcode. In assembler directive, the operation field contains a
pseudo-operation code (pseudo-op). Pseudo-op are not translated into machine code, rather
they simply tell the assembler to do something.

 Operand field

 It specifies the data that are to be acted on by the operation. An instruction may have
a zero, one or two operands.

Comment field

 A semicolon marks the beginning of a comment. Good programming practice
dictates comment on every line.

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 26

Examples: MOVCX, 0 ;move 0 to CX
 Do not say something obvious; so:

 MOV CX, 0 ;CX counts terms, initially 0

Put instruction in context of program
; initialize registers

DATA REPRESENTATION

Numbers

11011 decimal
11011B binary

64223 decimal
-21843D decimal
1,234 illegal, contains a non-digit character
1B4DH hexadecimal number
1B4D illegal hex number, does not end with
FFFFH illegal hex number, does not begin with digit
OFFFFH hexadecimal number

Signed numbers represented using 2's complement.

Characters

 Must be enclosed in single or double quotes, e.g. “Hello”, ‘Hello’, “A”, ‘B’
 encoded by ASCII code

o 'A' has ASCII code 41H
o 'a' has ASCII code 61H
o '0' has ASCII code 30H
o Line feed has ASCII code OAH
o Carriage Return has ASCII code
o Back Space has ASCII code 08H
o Horizontal tab has ASCII code 09H

VARIABLE DECLARATION

Each variable has a type and assigned a memory address.
Data-defining pseudo-ops

DB define byte
DW define word
DD define double word (two consecutive words)
DQ define quad word (four consecutive words)
DT define ten bytes (five consecutive words)

Each pseudo-op can be used to define one or more data items of given type.

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 27

Byte Variables

Assembler directive format assigning a byte variable
Name DB initial value
A question mark (“?”) place in initial value leaves variable uninitialized

I DB 4 ;define variable I with initial value 4
J DB ? ;Define variable J with uninitialized value
Name DB "Course" ;allocate 6 bytes for name
K DB 5, 3,-1 ;allocate 3 bytes

 K

 Other data type variables have the same format for defining the variables.
 Like:
 Name DW initial value

NAMED CONSTANTS

 EQU pseudo-op used to assign a name to constant.

 Makes assembly language easier to understand.

 No memory allocated for EQU names.

LF EQU 0AH
o MOV DL, 0AH
o MOV DL, LF

PROMPT EQU "Type your name"
o MSG DB “Type your name”
o MDC DB PROMPT

INPUT AND OUTPUT USING DOS ROUTINES

CPU communicates with peripherals through I/O registers called I/O ports. Two
instructions access I/O ports directly: IN and OUT. These are used when fast I/O is
essential, e.g. games.

Most programs do not use IN/OUT instructions. Since port addresses vary among
computer models and it is much easier to program I/O with service routines provided by
manufacturer.

Two categories of I/O service routines are Basic input & output system (BIOS) routines
and Disk operating system (DOS) routines. Both DOS and BIOS routines are invoked by
INT (interrupt) instruction.

05

03

FF

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 28

Disk operating system (DOS) routines

INT 21 H is used to invoke a large number of DOS function. The type of called function
is specified by pulling a number in AH register.

For example

AH=1 input with echo
AH=2 single-character output
AH=9 character string output
AH=8 single-key input without echo
AH=0Ah character string input

Single-Key Input

Input: AH=1
Output: AL= ASCII code if character key is pressed, otherwise 0.

To input character with echo:
MOV AH, 1
INT 21H read character will be in AL register

To input a character without echo:
MOV AH, 8
INT 21H read character will be in AL register

Single-Character Output

 Input: AH=2,
 DL= ASCII code of character to be output
 Output: AL=ASCII code of character

To display a character
MOV AH, 2
MOV DL, ‘?’
INT 21H displaying character'?'

Combining it together:

MOV AH, 1
INT 21H
MOV AH, 2
MOV DL, AL
INT 21H read a character and display it

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 29

To Display a String

Input: AH=9,
 DX= offset address of a string.
 String must end with a ‘$’ character.

To display the message Hello!

MSG DB “Hello!”
MOV AH, 9
MOV DX, offset MSG
INT 2IH

OFFSET operator returns the address of a variable The instruction LEA (load effective
address) loads destination with address of source
LEA DX, MSG

PROGRAM STRUCTURE

 Machine language programs consist of code, data and stack. Each part occupies a
memory segment. Each program segment is translated into a memory segment by the
assembler.

Memory models

The size of code and data a program can have is determined by specifying a memory
model using the .MODEL directive. The format is:

.MODEL memory-model

Unless there is lot of code or data, the appropriate model is SMALL

memory-model description

SMALL
One code-segment.
One data-segment.

MEDIUM
More than one code-segment.
One data-segment.
Thus code may be greater than 64K

COMPACT
One code-segment.
More than one data-segment.

LARGE
More than one code-segment.
More than one data-segment.
No array larger than 64K.

HUGE
More than one code-segment.
More than one data-segment.
Arrays may be larger than 64K.

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 30

Data segment

A program’s DATA SEGMENT contains all the variable definitions.
To declare a data segment, we use the directive .DATA, followed by variable and
constants declarations.

.DATA
WORD1 DW 2
MASK EQU 10010010B

Stack segment

It sets aside a block of memory for storing the stack contents.

.STACK 100H ;this reserves 256 bytes for the stack

If size is omitted then by-default size is 1KB.

Code segment

Contain program’s instructions.

.CODE name

Where name is the optional name of the segment
There is no need for a name in a SMALL program, because the assembler will

generate an error). Inside a code segment, instructions are organised as procedures. The
simplest procedure definition is

name PROC
;body of message
name ENDP

An example

MAIN PROC
;main procedure instructions
MAIN ENDP
;other procedures go here

Putting it together

.MODEL SMALL

.STACK 100H

.DATA
;data definition go here
.CODE
MAIN PROC
;instructions go here
MAIN ENDP

Microprocessor Programming and Interfacing Lab Session 06
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 31

;other procedures go here
END MAIN
The last line in the program should be the END directive followed by name of the main
procedure.

A Case Conversion Program

Prompt the user to enter a lowercase letter, and on next line displays another message with
letter in uppercase, as:
Enter a lowercase letter: a
In upper case it is: A

TITLE PGM4_1: CASE CONVERSION PROGRAM
.MODEL SMALL
.STACK 100H
.DATA
 CR EQU 0DH
 LF EQU 0AH
 MSG1 DB 'ENTER A LOWER CASE LETTER: $'
 MSG2 DB CR, LF, 'IN UPPER CASE IT IS: '
 CHAR DB ?,'$'
.CODE
MAIN PROC
;initialize DS
 MOV AX,@DATA ; get data segment
 MOV DS,AX ; initialize DS
;print user prompt
 LEA DX,MSG1 ; get first message
 MOV AH,9 ; display string function
 INT 21H ; display first message
;input a character and convert to upper case
 MOV AH,1 ; read character function
 INT 21H ; read a small letter into AL
 SUB AL,20H ; convert it to upper case
 MOV CHAR,AL ; and store it
;display on the next line
 LEA DX,MSG2 ; get second message
 MOV AH,9 ; display string function
 INT 21H ; display message and upper case letter in front
;DOS exit
 MOV AH,4CH ; DOS exit
 INT 21H
MAIN ENDP
 END MAIN

Save your program with (.asm) extension.
If “first” is the name of program then save it as “first.asm”

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 32

Lab Session 07
OBJECTIVE

Running an Assembly language program of 8088 microprocessor using the DEBUG tool

THEORY

ASSEMBLING THE PROGRAM

Assembling is the process of converting the assembly language source program into machine language
object file. The program “ASSEMBLER” does this.

Assemble the program

C:\>masm first.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [first.OBJ]: first

Source listing [NUL.LST]: first

Cross-reference [NUL.CRF]: first
47338 + 430081 Bytes symbol space free
0 Warning Errors
0 Severe Errors

After assembling the program as shown above you will find two additional files with the object file,
automatically generated by the assembler, in your directory i.e. the list file and the cross-reference file.
Name must be provided for .LST else NUL (nothing) will be generated.

1. OBJECT FILE

A non-executable file contains the machine code translation of assembly code, plus other information
needed to produce the executable.

2. LIST FILE

The list file is a text file that gives you assembly language code and the corresponding machine language
code, a list of names used in the program, error messages and other statistics as shown below for the
assembly file first.asm:

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 33

PGM4_1: CASE CONVERSION PROGRAM Page 1-1

 1 TITLE PGM4_1: CASE CONVERSION PROGRAM
 2 .MODEL SMALL
 3 .STACK 100H
 4 .DATA
 5 = 000D CR EQU 0DH
 6 = 000A LF EQU 0AH
 7 0000 45 4E 54 45 52 20 MSG1 DB 'ENTER A LOWER CASE LETTER: $'
 8 41 20 4C 4F 57 45
 9 52 20 43 41 53 45
 10 20 4C 45 54 54 45
 11 52 3A 20 20 24
 12 001D 0D 0A 49 4E 20 55 MSG2 DB 0DH, 0AH, 'IN UPPER CASE IT IS: '
 13 50 50 45 52 20 43
 14 41 53 45 20 49 54
 15 20 49 53 3A 20 20
 16 0035 00 24 CHAR DB ? ,'$'
 17 .CODE
 18 0000 MAIN PROC
 19 ; initialize DS
 20 0000 B8 ---- R MOV AX, @DATA ; get data segment
 21 0003 8E D8 MOV DS, AX ; initialize DS
 22 ; print user prompt
 23 0005 8D 16 0000 R LEA DX, MSG1 ; get first message
 24 0009 B4 09 MOV AH, 9 ; display string function
 25 000B CD 21 INT 21H ; display first message

 26 ; input a character and convert to uppercase
 27 000D B4 01 MOV AH, 1 ; read character function
 28 000F CD 21 INT 21H ; read a small letter into AL
 29 0011 2C 20 SUB AL, 20H ; convert it to upper case
 30 0013 A2 0035 R MOV CHAR, AL ; and store it
 31 ; display on the next line
 32 0016 8D 16 001D R LEA DX, MSG2 ; get second message
 33 001A B4 09 MOV AH, 9 ; display string function
 34 001C CD 21 INT 21H ; display message & upper case letter in front
 35 ; DOS exit

PGM4_1: CASE CONVERSION PROGRAM Page 1-2

 36 001E B4 4C MOV AH, 4CH ; DOS exit
 37 0020 CD 21 INT 21H

 38 0022 MAIN ENDP
 39 END MAIN

PGM4_1: CASE CONVERSION PROGRAM Symbols-1

Segments and Groups:

 N a m e Length Align Combine Class

DGROUP GROUP
 _DATA 0037 WORD PUBLIC 'DATA'
 STACK 0100 PARA STACK 'STACK'
_TEXT 0022 WORD PUBLIC 'CODE'

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 34

Symbols:

 N a m e Type Value Attr

CHAR L BYTE 0035 _DATA
CR . NUMBER 000D

LF . NUMBER 000A

MAIN N PROC 0000 _TEXT Length = 0022
MSG1 L BYTE 0000 _DATA
MSG2 L BYTE 001D _DATA

@CODE TEXT _TEXT
@CODESIZE TEXT 0
@CPU TEXT 0101h
@DATASIZE TEXT 0
@FILENAME TEXT cc
@VERSION TEXT 510

 32 Source Lines
 32 Total Lines
 23 Symbols

 46146 + 447082 Bytes symbol space free

 0 Warning Errors
 0 Severe Errors

3. CROSS-REFERENCE FILE

List names used in the program and the line number.

LINKING THE PROGRAM

Linking is the process of converting the one or more object files into a single executable file. The
program “LINKER” does this.

C:\>link first.obj;
Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

RUNNING THE PRORAM

On the command line type the name of the program to run.

C:\>first.exe
ENTER A LOWER CASE LETTER: a
IN UPPER CASE IT IS: A

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 35

DEBUGGING

DEBUG is a primitive but utilitarian program, supplied with MS-DOS, with a small easy to learn
command set. After assembling and linking the program in previous practical, (first.asm) we take the
first.exe into DEBUG.
On the MS-DOS prompt type the following command,

C:\>DEBUG first.exe

-

DEBUG comes back with its “-” command prompt.

To view registers and FLAGS, type “R”
C:\>debug first.exe

-R
AX=0000 BX=0000 CX=0030 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=1189 ES=1189 SS=119C CS=1199 IP=0000
NV UP EI PL NZ NA PO NC
1199:0000 B89A11 MOV AX,119A
-

As we know 8086/88 has 14 registers, all of these registers are shown by DEBUG with different values
stored in these registers.

FLAG REGISTER

The letters pairs on the fourth line are the current setting of some of the status and control FLAGS. The
FLAGS displayed and the symbols DEBUG uses are the following:

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 36

To change the contents of a register-for example, AX to 1245h

-RDX
DX 0000

:1245

Note:- DEBUG assumes that all numbers are expressed in hex. Now let us verify the change, through “R”
command.

DX now contain 1245h.

The next instruction to be executed by the CPU is written on the last line with its address in the memory.
Let us execute each instruction one by one using “T” trace command. But before that, just check whether
the “.exe” file is representing the same assembly language program or not, using the U (unassembled)
command.

The U command by default shows 32 bytes of program coding. The last instruction shown above is not
our last program’s instruction. To see the remaining instructions, specify directly some address ranges
ahead. Now execute instructions one be one using T command.

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 37

AX now have the segment number of the data segment. Again press T for one more time will execute the
instruction MOV DS, AX as shown on the last line above. This will initialize the data segment register
with the data segment address of the program.

The next command LEA DX, [0002] will load the offset address of MSG1 in DX which is 0002.

Check the contents of the data segment using the D command:

We can see that the string variables initialized in the Data Segment has been successfully loaded into the
memory locations as above.

Now through MOV AH, 09 and interrupt command -g 000d, MSG1will be displayed as shown below:

Pressing T one more time will move 01 in AH so that we can take input.

Microprocessor Programming and Interfacing Lab Session 07
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 38

Now through interrupt command -g 0011, user will be prompted to enter a lower case letter As you can
see, ‘a’ is entered as input, so AX will now contain 0161 where 61 is the ASCII code of ‘a’.

Now the SUB command will subtract 20 out of the contents of AL to perform case conversion.

Again pressing ‘t’, it will store the case conversion output i.e. ‘A’ in memory.

Now to display MSG2, its offset address will be loaded in DX:

MOV AH, 09 and interrupt command are used to print the string on screen as done before. The result will
be displayed as follows:

This message indicates that the program has run to completion. The program must be reloaded to execute
again.

Now leave the DEBUG using “Q”

Microprocessor Programming and Interfacing Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 39

Lab Session 08

OBJECTIVE

Calling a subroutine from another assembly file as a near procedure

THEORY

Near call—A call to a procedure within the current code segment (the segment currently pointed to by the

CS register), sometimes referred to as an intrasegment call.

Procedure Declaration

 The syntax of procedure declaration is the following:

name PROC NEAR

; body of procedure

ret

name ENDP

The CALL Instruction

 CALL invokes a procedure as:

 call name

where name is the name of a procedure.

Executing a CALL

 The return address to the calling program (the current value of the IP) is saved on the stack

 IP get the offset address of the first instruction of the procedure (this transfers control to the

procedure)

The RET instruction

 To return from a procedure, the executed instruction is:

 ret pop_value

 The integer argument pop_value is optional.

 ret causes the stack to be popped into IP.

A Case Conversion Program

Prompt the user to enter a lowercase letter, and on next line displays another message with letter in

uppercase, as:

Enter a lowercase letter: a

In upper case it is: A

We will create two different assembly files to implement case conversion. First file contains the code that

will prompt user to enter a lower case letter. This file contains a call to a near procedure named

Microprocessor Programming and Interfacing Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 40

CONVERT, which is used to perform case conversion. The second file contains the code of the procedure

CONVERT. So, when the procedure CONVERT is invoked, the given lower case letter will be converted

to upper case. The control will then be returned back to the calling procedure in the first file which will

display the output.

Assembly code for both of the files is given below:

TITLE PGM4_2: CASE CONVERSION

EXTRN CONVERT: NEAR

.MODEL SMALL

.STACK 100H

.DATA

MSG DB 'ENTER A LOWER CASE LETTER: $'

.CODE

MAIN PROC

 MOV AX, @DATA ; get data segment

 MOV DS, AX ; initialize DS

; print user prompt

 LEA DX, MSG ; get first message

 MOV AH, 9 ; display string function

 INT 21H ; display first message

; input a character and convert to upper case

 MOV AH, 1 ; read character function

 INT 21H ; read a small letter into AL

 CALL CONVERT ; convert to uppercase

 MOV AH, 4CH

 INT 21H ; DOS exit

MAIN ENDP

 END MAIN

Save your program with (.asm) extension. If “first” is the name of program then save it as “first.asm”.

TITLE PGM4_2A : CASE CONVERSION

PUBLIC CONVERT

.MODEL SMALL

.DATA

MSG DB 0DH, 0AH, 'IN UPPER CASE IT IS: '

CHAR DB -20H,'$'

.CODE

CONVERT PROC NEAR

;converts char in AL to uppercase

 PUSH BX

 PUSH DX

 ADD CHAR,AL

 MOV AH,9

 LEA DX,MSG

 INT 21H

 POP DX

 POP BX

 RET

CONVERT ENDP

 END

Microprocessor Programming and Interfacing Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 41

Save the previous program as well with (.asm) extension. If “second” is the name of program then save it

as “second.asm”.

Now follow the steps as mentioned in the previous lab session to assemble the two files. First perform all

the steps to assemble and create .obj file for the first program, list file and cross reference file will also be

generated automatically by the assembler for the first program. Now, do the same for the second program.

Observe the list files for both the programs.

Now we have to link the two files. For this, write the following line on the command prompt:

>link first + second

Then give any name to the resultant file (e.g.: first). Now we have a single .exe file to perform case

conversion. Write following line on the command prompt:

>debug first.exe

Check whether the .exe file is representing the same assembly language program or not, using the U

(unassembled) command.

The U command by default shows 32 bytes of program coding. To see the remaining instructions, specify

directly some address ranges ahead.

To see initial condition of registers, type R command.

Now execute instructions one be one using T command.

Microprocessor Programming and Interfacing Lab Session 08
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 42

Through above commands, we have initialized the data segment, verify by using D command.

You can see in the above figure that the data segment is initialized with the messages. Now execute the

assembly and interrupt commands and note down the observations stepwise.

EXERCISE 1

Write a program that takes two numbers as input and performs their addition. The code for addition of the

numbers should be present in another assembly file that should be called as a near procedure in the first

file.

Microprocessor Programming and Interfacing Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 43

Lab Session 09
OBJECTIVE

Executing Data Transfer and Stack operation instructions

THEORY

Opcode of following MOV instructions: 100010dw oorrrmmm disp

MOV reg1 , reg2 ; copy the contents of 8-bit register “reg2” in the 8-bit register “reg1”.

MOV mem , reg ; copy the contents of 8-bit register “reg” in memory location “mem”.

MOV reg , mem ; copy the contents of memory location “mem” into the register “reg”.

Opcode of following MOV instruction: 100010dw oorrrmmm disp data

MOV mem , imm ; copy the immediate data “imm” into memory location “mem”.

Opcode of following MOV instruction: 1011wrrr data

MOV reg , imm ; copy the immediate data “imm” into the register “reg”.

Opcode of following MOV instructions: 101000dw disp

MOV mem , acc ; copy the contents of accumulator into memory location “mem”.

MOV acc , mem ; copy the contents of memory location “mem” into accumulator.

Stack instructions:

Instruction opcode Description

PUSH reg 01010rrr pushes the contents of register “reg” onto the stack.

PUSH mem 11111111 oo110mmm disp pushes the contents of memory location “mem”

onto the stack.

PUSH seg 00sss110 pushes the contents of segment register “seg” onto

the stack.

PUSH imm 011010s0 data pushes the immediate data “imm” onto the stack.

PUSHA/PUSHAD 01100000 pushes all the registers onto the stack

PUSHF/PUSHFD 10011100 pushes the flags onto the stack.

POP reg 01011rrr pops the contents of register “reg” from top of the

stack.

POP mem 10001111 oo000mmm disp pops the contents of memory location “mem” from

top of the stack.

POP seg 00sss111 pops the contents of segment register “seg” from

top of the stack

POPA/POPAD 01100001 pops all the registers from the stack.

POPF/POPFD 10010000 pops the flags from the stack.

PUSHA and POPA instructions are not available in 8008 microprocessor.

Microprocessor Programming and Interfacing Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 44

ASSEMBLY PROGRAM
 .MODEL SMALL

 .STACK 100H

 .CODE

 MAIN PROC

1. MOV AX , 0B386H

2. MOV BX , 0200H

3. MOV CX , 0A5CH

4. MOV DX , 0D659H

5. MOV BP , 0300

6. MOV ES , CX

7. MOV WORD PTR DS:[0200H], 95D8H

8. ADD AX , BX

9. PUSH AX

10. PUSH WORD PTR[BX]

11. PUSH ES

12. PUSHF

13. PUSH DX

14. POP CX

15. POP DI

16. POP DS

17. POP WORD PTR[BP]

18. POPF

19. MOV AH, 4CH

20. INT 21H

 MAIN ENDP

 END MAIN

OBSERVATIONS
By using single stepping observe the working of the program.

Inst# AX BX CX DX Flag BP SP ES DS DI [0200] [0300]
7

th

8
th

13
th

14
th

15
th

16
th

17
th

18
th

Note the contents of the SS: SP register after 13
th

 instruction and then examine the contents of the

corresponding memory locations pointed out to by SS:SP.

Microprocessor Programming and Interfacing Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 45

EXERCISE 1

Write a program, which

1. Loads AX, BX, CX and DX registers with A154, 7812, 9067, BFD3.

2. Exchange lower byte of CX and higher byte of DX registers by using memory location 0150 in

between the transfer. Then stores CX and DX registers onto memory location 0170 onward.

3. Exchange higher byte of AX and higher byte of BX registers by using memory location 0160 in

between the transfer. Then stores AX and BX registers onto memory location 0174 onward.

4. Also draw the flow chart of the program.

 Program Flowchart

OBSERVATIONS 1

 Observe the contents of memory location from 0170 to 0177 and record them below in a table.

 Observe the contents of registers by using single stepping and record the final contents below.

Contents of memory location Contents of Registers

____________________________________ AX

____________________________________ BX

____________________________________ CX

____________________________________ DX

Microprocessor Programming and Interfacing Lab Session 09
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 46

EXERCISE 2

Write a program that produces certain delay and then increment the Accumulator register. When

accumulator produces a carry then the buzzer should generate tone for a certain time. Implement this

program using subroutine. The length of delay is passed to the delay subroutine as a parameter, using

stack. Also draw the flowchart. You can also use any assembler for this exercise.

 Program Flowchart

Microprocessor Programming and Interfacing Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

47

Lab Session 10

OBJECTIVE

Implementing Logic group of instructions

THEORY

Gate instructions:

Opcode Inst. Operand1, Operand2 Description

001000dw oorrrmmm disp AND

reg/mem, reg/mem

Perform logical operation

on register/memory with

the memory or the second

register. Both the two

operands cannot be the

memory location.

000010dw oorrrmmm disp OR

001100dw oorrrmmm disp XOR

100000sw oo100mmm disp data AND

reg/mem/acc, imm

Perform logical operation

on the “immediate value”
with the contents of the

register / memory location

or specifically the

accumulator.

100000sw oo001mmm disp data OR

100000sw oo100mmm disp data XOR

Shift and Rotate Instructions:

Description

Instruction Op-code

TTT

value

1101000w

ooTTTmmm disp

1101001w

ooTTTmmm disp

1101001w

ooTTTmmm disp

Shift/Rotate one

time

Shift/Rotate

according to the

contents of the CL

register

Shift/Rotate according

to the immediate

memory location

“mem”
Rotate left without carry ROL reg/mem , 1 ROL reg/mem , CL ROL reg/mem , imm 000

Rotate right without

carry
ROR reg/mem , 1 ROR reg/mem , CL ROR reg/mem , imm 001

Rotate left with carry RCL reg/mem , 1 RCL reg/mem , CL RCL reg/mem , imm 010

Rotate right with carry RCR reg/mem , 1 RCR reg/mem , CL RCR reg/mem , imm 011

Shift logic left SAL reg/mem , 1 SAL reg/mem , CL SAL reg/mem , imm 100

Shift Arithmetic left SHL reg/mem , 1 SHL reg/mem , CL SHL reg/mem , imm ″
Shift logic right SHR reg/mem , 1 SHR reg/mem , CL SHR reg/mem , imm 101

Shift arithmetic right SAR reg/mem , 1 SAR reg/mem , CL SAR reg/mem , imm 111

Microprocessor Programming and Interfacing Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

48

ASSEMBLER PROGRAM – I (GATE INSTRUCTIONS)

 .MODEL SMALL

 .STACK 100H

 .CODE

 MAIN PROC

1. MOV AX, 8A53H

2. MOV BX, 0200H

3. MOV CX, 692DH

4. MOV DX, 0E6CBH

5. MOV WORD PTR[BX], 7B8AH

6. AND AX, BX

7. AND CX, WORD PTR[BX]

8. OR WORD PTR[BX], CX

9. OR WORD PTR[BX], 6F0CH

10. XOR AX, 94D7H

11. XOR DX, 0C4D1H

12. MOV AH, 4CH

13. INT 21H

 MAIN ENDP

 END MAIN

OBSERVATIONS

By using single stepping record the contents of following registers:

Register After 5
th

instruction

After 6
th

instruction

After 7
th

instruction

After 8
th

instruction

After 9
th

instruction

After 10
th

instruction

 After 11
th

instruction

AX

BX

CX

DX

Flag

Word[0200]

Microprocessor Programming and Interfacing Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

49

ASSEMBLER PROGRAM –II (SHIFT AND ROTATE INSTRUCTIONS)

 .MODEL SMALL

 .STACK 100H

 .CODE

 MAIN PROC

1. MOV AX, 1111H

2. MOV BX, 2222H

3. MOV CX, 3303H

4. MOV SI, 9254H

5. MOV WORD PTR DS:[0100H], 6655H

6. MOV BYTE PTR DS:[0123H], 77H

7. MOV WORD PTR DS:[0126H], 9988H

8. ROL AX, 1

9. ROL BYTE PTR DS:[0100H], 1

10. ROL AX, CL

11. ROL BYTE PTR DS:[0100H], CL

12. RCL BX, 1

13. RCL WORD PTR DS:[0100H], 1

14. RCL AX, CL

15. RCL WORD PTR DS:[0100H], CL

16. ROR AX, 1

17. ROR AX, CL

18. ROR BYTE PTR DS:[0126H], CL

19. RCR BX, 1

20. RCR BYTE PTR DS:[0127H], CL

21. SHL BX, 1

22. SHL BYTE PTR DS:[0126H], CL

23. SAR SI, 1

24. SAR SI, CL

25. SHR BYTE PTR DS:[0123H], 1

26. SHR BYTE PTR DS:[0123H], CL

27. MOV AH, 4CH

28. INT 21H

 MAIN ENDP

 END MAIN

Microprocessor Programming and Interfacing Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

50

OBSERVATIONS

By using single stepping observe the contents of the registers and memory locations that are used to store

data in the program.

 Registers Memory Locations

 AX BX SI CF 100 101 123 126 127

7. _____ _____ _____ _____ _____ _____ _____ _____ _____

8. _____ _____ _____ _____ _____ _____ _____ _____ _____

9. _____ _____ _____ _____ _____ _____ _____ _____ _____

10. _____ _____ _____ _____ _____ _____ _____ _____ _____

11. _____ _____ _____ _____ _____ _____ _____ _____ _____

12. _____ _____ _____ _____ _____ _____ _____ _____ _____

13. _____ _____ _____ _____ _____ _____ _____ _____ _____

14. _____ _____ _____ _____ _____ _____ _____ _____ _____

15. _____ _____ _____ _____ _____ _____ _____ _____ _____

16. _____ _____ _____ _____ _____ _____ _____ _____ _____

17. _____ _____ _____ _____ _____ _____ _____ _____ _____

18. _____ _____ _____ _____ _____ _____ _____ _____ _____

19. _____ _____ _____ _____ _____ _____ _____ _____ _____

20. _____ _____ _____ _____ _____ _____ _____ _____ _____

21. _____ _____ _____ _____ _____ _____ _____ _____ _____

22. _____ _____ _____ _____ _____ _____ _____ _____ _____

23. _____ _____ _____ _____ _____ _____ _____ _____ _____

24. _____ _____ _____ _____ _____ _____ _____ _____ _____

25. _____ _____ _____ _____ _____ _____ _____ _____ _____

26. _____ _____ _____ _____ _____ _____ _____ _____ _____

EXERCISE 1

Write a program which mask the bits of AX register, by setting left-most 4 bits ,resetting right

most 4 bits and complement bit position number 9 and 10.(Hint: Use AND,OR and XOR

instructions for masking).

 Program Flowchart

Microprocessor Programming and Interfacing Lab Session 10
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

51

EXERCISE 2

An ASCII coded number can be converted to BCD by masking. Write a program which

converts ASCII 30H - 39H to BCD 0-9. Use any assembler for this exercise.

 Program Flowchart

EXERCISE 3

Write a program, which multiply two 8-bit numbers using add and shift logic. Check the

program by

(i) loads accumulator with 20H and then multiply it by 10H.

(ii) loads BL with 10H and multiply it by 12H.

Use any assembler of your choice for this purpose.

Also draw the flow chart of the program.

 Program Flowchart

OBSERVATIONS FOR EXERCISE 3
Value of the Multiplicand = ------------------.

Value of the Multiplier = ------------------.

Result of Multiplication = -------------------.

Microprocessor Programming and Interfacing Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 52

Lab Session 11

OBJECTIVE

Simulating Transfer of control instructions

THEORY

Jump Instructions transfers the control of program to the location addressed by the specified location (as
listed in description column)

Instruction Opcode Description

JMP label (short) 11101011 disp IP+disp

JMP label (near) 11101001 disp

JMP label (far) 11101010 IPnew CSnew Label

JMP reg (near) 11111111 oo100mmm contents of register “reg”

JMP mem (near) memory location “mem”

JMP mem (far) 11111111 oo101mmm

Jcnd label (8-bit disp) 0111cccc disp IP+disp; when condition
“cnd” becomes true Jcnd label (16-bit disp) 00001111 1000cccc disp

Condition

Codes

Mnemonic Flag Description

0000 JO O = 1 Jump if overflow

0001 JNO O = 0 Jump if no overflow

0010 JB/JNAE C = 1 Jump if below

0011 JAE/JNB C = 0 Jump if above or equal

0100 JE/JZ Z = 1 Jump if equal/zero

0101 JNE/JNZ Z = 0 Jump if not equal/zero

0110 JBE/JNA C = 1 , Z = 1 Jump if below or equal

0111 JA/JNBE O = 0 , Z = 0 Jump if above

1000 JS S = 1 Jump if sign

1001 JNS S = 0 Jump if no sign

1010 JP/JPE P = 1 Jump if parity

1011 JNP/JPO P = 0 Jump if no parity

1100 JL/JNGE S = O Jump if less than

1101 JGE/JNL S = 0 Jump if greater than or equal

1110 JLE/JNG Z = 1 , S = O Jump if less than or equal

1111 JG/JNLE Z = 0 , S = O Jump if greater than

Microprocessor Programming and Interfacing Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 53

ASSEMBLER PROGRAM – I (Unconditional Branch)

.MODEL SMALL

.STACK 100H

.DATA
 MSG1 DB 0Dh, 0AH, 'ENTER THE FIRST CHARACTER: $'
 MSG2 DB 0DH, 0AH, 'ENTER THE SECOND CHARACTER: $'

.CODE
MAIN PROC
 MOV AX, @DATA
 MOV DS, AX

again:
 LEA DX, MSG1 ; PROMPTING USER TO ENTER THE FIRST CHARACTER
 MOV AH, 9
 INT 21H

 MOV AH, 1 ; TAKING INPUT FROM THE USER
 INT 21H

 LEA DX, MSG2 ; PROMPTING USER TO ENTER THE SECOND CHARACTER
 MOV AH,9
 INT 21H

 MOV AH, 1 ; TAKING INPUT FROM THE USER
 INT 21H

 JMP again ; Jump to the first instruction

 MOV AH, 4CH
 INT 21H

MAIN ENDP

END MAIN

OBSERVATIONS

By using single stepping observe the working of the program. Record the content of the AX registers.

 Character AX

1

2

3

4

5

When does this program end? __

Microprocessor Programming and Interfacing Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 54

ASSEMBLER PROGRAM – II (Conditional Branch)

.MODEL SMALL

.STACK 100H

.DATA
 MSG1 DB 0Dh, 0AH, 'ENTER THE FIRST CHARACTER: $'
 MSG2 DB 0DH, 0AH, 'THE FIRST CHARACTER IS: '
 CH1 DB ?, '$'
 MSG3 DB 0DH, 0AH, 'ENTER THE SECOND CHARACTER: $'
 MSG4 DB 0DH, 0AH, 'THE SECOND CHARACTER IS: '
 CH2 DB ?, '$'

.CODE
MAIN PROC
 MOV AX, @DATA
 MOV DS, AX
again:
 LEA DX, MSG1 ; PROMPTING USER TO ENTER THE FIRST CHARACTER
 MOV AH, 9
 INT 21H

 MOV AH, 1 ; TAKING INPUT FROM THE USER
 INT 21H

 MOV CH1, AL ; UPDATING RESULT IN THE VARIABLE

 MOV BX, 0000H
 MOV BL, AL

 LEA DX, MSG2 ; OUTPUTTING THE FIRST CHARACTER ON SCREEN WITH MESSAGE
 MOV AH, 9
 INT 21H

 LEA DX, MSG3 ; PROMPTING USER TO ENTER THE SECOND CHARACTER
 MOV AH, 9
 INT 21H

 MOV AH, 1 ; TAKING INPUT FROM THE USER
 INT 21H

 MOV CH2, AL ; UPDATING RESULT IN THE VARIABLE

 LEA DX, MSG4 ; OUTPUTTING THE SECOND CHARACTER ON SCREEN WITH MESSAGE
 MOV AH, 9
 INT 21H

 MOV AH, 0
 MOV AL, CH2

 CMP AX, BX

Microprocessor Programming and Interfacing Lab Session 11
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 55

 JNZ again

 MOV AH, 4CH
 INT 21H

MAIN ENDP

END MAIN

OBSERVATIONS

By using single stepping observe the contents of registers AX, BX after execution of each instruction.

 (Different Key input) (Same Key Input)
 AX BX AX BX

After 1st instruction __________ __________ __________ __________
After 2nd instruction __________ __________ __________ __________
After 3rd instruction __________ __________ __________ __________
After 1st instruction __________ __________ __________ __________
After 1st instruction __________ __________ __________ __________
After 4th instruction __________ __________ __________ __________
After 5th instruction __________ __________ __________ __________
After 6th instruction __________ __________ __________ __________
After 7th instruction __________ __________ __________ __________
After 8th instruction __________ __________ __________ __________
After 9th instruction __________ __________ __________ __________
Flag register after

8
th

 instruction

__________ __________ __________ __________

EXERCISE

Write a program, which prints your name on the screen when ‘space’ key is pressed from the keyboard.
Implement using conditional jump instruction. Also draw the flow chart of the program.

 Program Flowchart

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 56

Lab Session 12
OBJECTIVE

Implementing Arithmetic group of instructions

THEORY

Opcode Inst. Operand1,

Operand2

Description

000000/000101dw

oorrrmmm disp

ADD/SUB reg1, reg2
OR

mem, reg
OR

reg, mem

add/subtract (with carry/borrow) the

contents of the register “reg” or

“mem” with/from the register “reg”

or “mem”
000100/000110dw

oorrrmmm disp

ADC/SBB

100000sw

oo000/101mmm disp data

ADD/SUB reg, imm
OR

mem, imm
OR

acc, imm

add/subtract (with carry/borrow) the

immediate data “imm” with/from

register/memory location or

specifically the accumulator.
100000sw

oo010/011mmm disp data

ADC/SBB

Opcode of following MUL instructions: 1111011w oo100mmm disp

MUL reg ; multiply the contents of register “reg” with the accumulator register and

; return the result in “AH and AL” or “DX and AX”.

MUL mem ; multiply the contents of memory “mem” with the accumulator register and

; return the result in “AH and AL” or “DX and AX”.

Opcode of following DIV instructions: 1111011w oo110mmm disp

DIV reg ; divide the contents of the accumulator register by the contents of register “reg”

; and return the remainder in AH and the quotient in AL,

; or the remainder in DX and the quotient in AX.

DIV mem ; divide the contents of the accumulator register by the contents of

; memory location “mem” and return the remainder in AH and the

; quotient in AL or the remainder in DX and the quotient in AX.

ASSEMBLER PROGRAM – I (Addition)

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV AX, 4000H

 MOV BX, 0006H

 MOV CX, 8

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 57

again:

 ADC AX, BX

 LOOP again

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

OBSERVATIONS

Using single stepping record the contents of AX register until CX becomes zero

 CX AX CX AX CX AX

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

ASSEMBLER PROGRAM – II (Subtraction)

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV AX, 4000H

 MOV BX, 0006H

 MOV CX, 8

again:

 SBB AX, BX

 LOOP again

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 58

OBSERVATIONS
Using single stepping record the contents of AX register until CX becomes zero

 CX AX CX AX CX AX

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______ _______

ASSEMBLER PROGRAM – III (Multiplication)

8-bit MULTIPLICATION

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV AX, 0FFH

 MOV CL, 0006H

 MUL CL

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

16-bit MULTIPLICATION

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV AX, 0FFH

 MOV CL, 0006H

 MUL CL

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 59

OBSERVATIONS

Record values of AX, BX, CX & DX before & after execution of MUL instruction.

For 8-bit Multiplication:

Before Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

For 16-bit Multiplication:

Before Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of MUL:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

ASSEMBLER PROGRAM – IV (Division)

8-bit DIVISION:

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV AX, 0400H

 MOV CL, 0006H

 DIV CL

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 60

16-bit DIVISION:

.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC

 MOV DX, 0023H

 MOV AX, 0004H

 MOV CL, 0300H

 DIV CX

 MOV AH, 4CH

 INT 21H

MAIN ENDP

END MAIN

OBSERVATIONS

Record values of AX, BX, CX & DX before & after execution of DIV instruction.

For 8-bit Division:

Before Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

For 16-bit Division:

Before Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

After Execution of DIV:

 AX : __________ , BX : __________

 CX : __________ , DX : __________

Microprocessor Programming and Interfacing Lab Session 12
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 61

EXERCISE 1

Write a program, which will add the contents of two 32 bit numbers stored in DX – AX (DX contains the

high order word) and memory location WORD PTR [0202] – WORD PTR [0200].

Program

EXERCISE 2

Write a program, which calculate the factorial of any given number (the number may be used as an

immediate operand in the instruction). Use any assembler for this exercise.

 Program Flowchart

Microprocessor Programming and Interfacing Lab Session 13
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 62

Lab Session 13

OBJECTIVE

De-multiplexing of Address/Data bus of 8088 microprocessor

THEORY

There is 20-bit address bus and 8-bit data bus present on the chip of 8088 microprocessor. Lower 8 bits of

address and data buses are time multiplexed with each other. For any machine cycle address comes out of

the microprocessor and after some time the bus is used for data transfer between microprocessor and

memory or I/O device. In this way the address is not present there for the whole machine cycle on the

bus. For holding the address for the full machine cycle we have to design a circuit.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

1. 8088 microprocessor

2. 74LS373 latches

3. 74LS244 buffers

4. 74LS245 buffers

STEPS OF DESIGNING (Connection description)

1. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the inputs of latch

74LS373. The only address will be available after passing through the latch.

2. The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.

3. The only address will be available after passing through the latch.

4. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the inputs of bi-

directional buffer 74LS245.

5. The enable pin of the buffer 74LS245 will be connected to the DEN pin of the 8088.

6. The only data will be passed through the buffer in either direction.

7. The DT/R pin of the microprocessor will control the direction of data flow through the bi-directional

buffer.

8. Connect the higher 8 bits of the address bus (A8-A15) to the inputs of buffer 74LS244.

9. Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

10. Connect the same pins to the inputs of buffer 74LS244 to get the status signals S3, S4, S5 and S6

from 8088.

Microprocessor Programming and Interfacing Lab Session 13
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 63

EXERCISE

Draw the complete de-multiplexed circuit of the given steps.

Microprocessor Programming and Interfacing Lab Session 14
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 64

Lab Session 14

OBJECTIVE

Creating input/output device select pulses using 8088 microprocessor

THEORY

The Microprocessor 8088 has 16-bit register to address I/O devices. Here we have to create device select

pulses to select input and output devices. We will use DIP switches as input device and LEDs as output

device.

DESIGN OF CIRCUIT

These components will be required for design of the circuit:

1. DIP switches.

2. LEDs.

3. 74LS08 AND gates.

4. 74LS04 hex inverter.

5. 74LS138 line decoder.

STEPS OF DESIGNING (Connection description)

 For input device selection we have to use IO/M and RD signals and address of the input device to be

selected to generate the device select pulse.

 For output device selection we have to use IO/M and WR signals and address of the output device to

be selected to generate the device select pulse.

 As IO/M, RD, WR are active low for I/O operations so we will generate the device select pulse in

given below manner.

IO/M

 RD Input Device Select Pulse

Address

of input device

IO/M

 WR Output Device Select Pulse

Address

of output device

 By using these device select pulse we can select/enable the DIP switches or LEDs according to the

need.

Microprocessor Programming and Interfacing Lab Session 14
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 65

OR

 By using 74138 line-decoder we can generate the device select pulses for I/O devices.

EXERCISE

Implement the circuit to generate device select pulses using 74138 line-decoder.

Microprocessor Programming and Interfacing Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 66

Lab Session 15

OBJECTIVE

Interfacing 8255PPI to the 8088 Microprocessor

THEORY

There are three different ports (Port A, Port B and Port C) are available to interface I/O devices to 8088

microprocessor. There is an internal register, which stores Command Word so we can call it Command

register. Command Word defines the modes of working of ports of the device. There are three different

types of modes present in 8255 to interface I/O devices to 8088 microprocessor.

Mode 1 : Simple I/O.

Mode 2 : Strobed I/O.

Mode 3 : Handshake I/O.

There are two pins A0 and A1 present on the package of 8255PPI to select the ports.

A1 A0 Select

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Command Register

First of all the Command Register is selected and the Command Word is stored in the register. After that

we can use the ports of 8255PPI according to the function that we have defined in the Command Word.

DESIGN OF CIRCUIT

These components will be required for design of the circuit.

1. 8088 microprocessor.

2. 8255 Programmable Peripheral Interface.

3. DIP switches.

4. LEDs.

5. 74LS373 latches.

6. 74LS244 buffers.

7. 74LS245 buffers.

8. 74LS04 hex inverter.

9. Small capacity RAM IC (e.g. 4016).

10. Small capacity EPROM IC (e.g. 2716).

11. 74LS138 line decoder.

Microprocessor Programming and Interfacing Lab Session 15
NED University of Engineering & Technology – Department of Computer & Information Systems Engineering

 67

STEPS OF DESIGNING (Connection description)

1. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the inputs of latch

74LS373. The only address will be available after passing through the latch.

2. The enable pin of the latch 74LS373 will be connected to the ALE pin of the 8088.

3. The only address will be available after passing through the latch.

4. Connect the lower 8 bits of the time multiplexed address/data (AD0-AD7) bus to the inputs of bi-

directional buffer 74LS245.

5. The enable pin of the buffer 74LS245 will be connected to the DEN pin of the 8088.

6. The only data will be pass through the buffer in either direction.

7. The DT/R pin of the microprocessor will control the direction of data flow through the bi-directional

buffer.

8. Connect the higher 8 bits of the address bus (A8-A15) to the inputs of buffer 74LS244.

9. Connect the next 4 bits (A16-A19) of address bus to the latch 74LS373.

10. Connect the same pins to the inputs of buffer 74LS244 to get the status signals S3, S4, S5 and S6

from 8088.

11. Define the addresses for selecting 8255PPI, RAM and EPROM ICs.

12. Connect three address pins to the inputs (A, B and C) of 74138 decoder.

13. Connect the enable pins of the decoder 74138 to appropriate address lines.

14. Connect the data bus of microprocessor to the data bus of 8255PPI.

15. A0 and A1 pins of 8255PPI will be connected to A0 and A1 pins of 8088 microprocessor respectively.

16. CS (Chip Select) pin of 8255PPI will be connected to one of the outputs of 74138 decoder.

17. RESET of 8255PPI will be connected to RESET of 8088 microprocessor.

18. RD and WR pins of 8255PPI will be connected to the IORC and IOWC pins of 8088 microprocessor

respectively.

19. Connect the address and data buses of EPROM and RAM to the address and data buses of 8088

microprocessor.

20. CE or CS pin of EPROM and RAM will be connected to one of the outputs of the 74138 decoder.

21. OE pin of the EPROM and RAM will be connected to the RD pin of the microprocessor.

	Practical Workbook
	Dept. of Computer & Information Systems Engineering
	NED University of Engineering & Technology

	Department : ____________________________
	Practical Workbook
	CONTENTS
	OBJECTIVE
	THE PRIMA WINDOWS
	The main window: In this window, you see the building blocks of the PRIMA and the control panel at the bottom of the window. You see an image of the PRIMA, explaining the different elements:
	EDIT RAM
	The control panel
	 The "load" button: You can load a program into the RAM with this button. To do this you have to choose a program from the choice or type in your own program.
	EXERCISES

	OBJECTIVE
	Simulating Instruction Set of von Neumann Machine using PRIMA VIRTUAL MACHINE (PVM)
	EXERCISES

	OBJECTIVE
	EXERCISES
	OBJECTIVE
	EXERCISES
	OBJECTIVE
	THEORY
	INSTRUCTION SET ARCHITECTURE
	ISA of 8088 microprocessor-based computer

	OBJECTIVE
	Programming in Assembly Language Programming of 8088 microprocessor
	THEORY
	MOV reg1 , reg2 ; copy the contents of 8-bit register “reg2” in the 8-bit register “reg1”.
	MOV mem , imm ; copy the immediate data “imm” into memory location “mem”.
	MOV mem , acc ; copy the contents of accumulator into memory location “mem”.
	MOV acc , mem ; copy the contents of memory location “mem” into accumulator.
	Write a program, which multiply two 8-bit numbers using add and shift logic. Check the program by
	MUL reg ; multiply the contents of register “reg” with the accumulator register and
	; return the result in “AH and AL” or “DX and AX”.
	MUL mem ; multiply the contents of memory “mem” with the accumulator register and
	; return the result in “AH and AL” or “DX and AX”.
	DIV reg ; divide the contents of the accumulator register by the contents of register “reg”
	; and return the remainder in AH and the quotient in AL,
	; or the remainder in DX and the quotient in AX.
	DIV mem ; divide the contents of the accumulator register by the contents of
	; memory location “mem” and return the remainder in AH and the
	; quotient in AL or the remainder in DX and the quotient in AX.
	There is 20-bit address bus and 8-bit data bus present on the chip of 8088 microprocessor. Lower 8 bits of address and data buses are time multiplexed with each other. For any machine cycle address comes out of the microprocessor and after some time t...
	There are three different ports (Port A, Port B and Port C) are available to interface I/O devices to 8088 microprocessor. There is an internal register, which stores Command Word so we can call it Command register. Command Word defines the modes of w...
	Mode 1 : Simple I/O.
	Mode 3 : Handshake I/O.
	There are two pins A0 and A1 present on the package of 8255PPI to select the ports.

